We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




World’s First Biomarker Can Diagnose Parkinson's Disease from Blood Serum Samples

By LabMedica International staff writers
Posted on 30 May 2022
Print article
Image: A biomarker will enable Parkinson’s disease to be diagnosed from blood samples (Photo courtesy of Unsplash)
Image: A biomarker will enable Parkinson’s disease to be diagnosed from blood samples (Photo courtesy of Unsplash)

Parkinson’s disease is the second most common neurodegenerative disease in the world and believed to affect around 1-2% of the over 60s population. Furthermore, it is predicted to cost the global market USD 20 billion (including treatment costs) in 2030. Currently, there is no way of completely curing Parkinson’s disease. Therefore, early detection is vital in order to stop its progression. Currently, various biomarkers are in development that can be used to evaluate diseases. These biomarkers can detect the presence of a disease, as well as monitor its progress and the effectiveness of treatment. In a world-first, researchers have succeeded in developing a biomarker that can be used to easily and inexpensively assess Parkinson’s disease.

The drug metabolizing enzyme Cytochrome P450 not only metabolizes drugs but also serves as a catalyst for the oxidation of various substances. It is known that the expression of P450 inside the body changes with the onset of various diseases. This change in P450 expression is thought to affect the quantity and quality of metabolites in the patient’s body that are related to P450. A group of researchers at Kobe University (Kobe, Japan) and Hiroshima University (Higashihiroshima, Japan) had previously come up with a ‘P450 inhibition assay’ to easily detect changes in the quality and quantity of P450-related metabolites brought on by the onset of disease. This time, they have become the first in the world to successfully apply this method to Parkinson’s disease diagnosis.

In the developed assay, 12 different human P450s are each mixed with a serum sample and a fluorescent substrate to cause a reaction. There are differences in quantity and quality of P450-related metabolites in the sera from healthy individuals and patients. These serum metabolites inhibit the P450-mediated oxidation of the fluorescent substrate. By looking at the inhibition rate related to disease onset-mediated alterations in certain P450s, it is possible to discriminate sera samples from an individual with a specific disease and a healthy subject. P450 reacts with the fluorescent substrate to generate a fluorescent substance when the assay is performed on the sera from healthy individuals. However, the reaction is different when the assay is conducted on the sera from patients and thus the obtained fluorescent values change. In this way, the ‘P450 fluorescent inhibition assay’ can be used to determine whether or not a disease is present by detecting these changes. It is a new liquid biopsy technique that did not exist until now.

The current study on Parkinson’s disease utilized the ‘P450 inhibition assay’ that was independently developed by the research group. Specifically, they carried out the assay on Parkinson’s disease model rats and on human patients with the disease (as well as patients with other neurodegenerative and inflammatory diseases) to evaluate whether or not the assay could be used for Parkinson’s disease diagnosis. The results revealed that healthy individuals and individuals with Parkinson’s disease could be classified at an accuracy rate of 85~88% for both the model rat and human subjects.

Thus, the results of the study have shown that the ‘P450 inhibition assay’ has the potential to be applied to the diagnosis of Parkinson’s disease. This assay only requires mere 30μ of serum and is a comparatively inexpensive testing method and therefore, will benefit Parkinson’s disease screening. Next, the researchers will conduct clinical performance evaluations on a larger scale, with the aim of working towards the implementation of this testing method.

Related Links:
Kobe University
Hiroshima University 

Gold Member
Chagas Disease Test
CHAGAS Cassette
Verification Panels for Assay Development & QC
Seroconversion Panels
New
HbA1c Test
HbA1c Rapid Test
New
Herpes Simplex Virus ELISA
HSV 2 IgG – ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: Professor Nicole Strittmatter (left) and first author Wei Chen stand in front of the mass spectrometer with a tissue sample (Photo courtesy of Robert Reich/TUM)

Mass Spectrometry Detects Bacteria Without Time-Consuming Isolation and Multiplication

Speed and accuracy are essential when diagnosing diseases. Traditionally, diagnosing bacterial infections involves the labor-intensive process of isolating pathogens and cultivating bacterial cultures,... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: The new algorithms can help predict which patients have undiagnosed cancer (Photo courtesy of Adobe Stock)

Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer

Two newly developed advanced predictive algorithms leverage a person’s health conditions and basic blood test results to accurately predict the likelihood of having an undiagnosed cancer, including ch... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.