We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Molecular Blood Test Could Identify Alzheimer's

By LabMedica International staff writers
Posted on 06 Sep 2017
Print article
Image: A newly developed molecular test could detect Alzheimer\'s disease at a pre-symptomatic state. The results indicated that multivariate analysis of transcripts in blood samples can provide an accurate and minimally invasive strategy for diagnosis of AD and early detection of AD risk (Image courtesy of Arizona State University; Graphic by Jason Drees).
Image: A newly developed molecular test could detect Alzheimer\'s disease at a pre-symptomatic state. The results indicated that multivariate analysis of transcripts in blood samples can provide an accurate and minimally invasive strategy for diagnosis of AD and early detection of AD risk (Image courtesy of Arizona State University; Graphic by Jason Drees).
A new multivariate molecular test is being developed that includes testing for genes to identify people at risk of developing Alzheimer’s disease (AD) and testing of peripheral blood leukocyte RNA transcripts to provide early diagnosis of people with AD. The new method distinguished between Alzheimer’s, Parkinson’s, and healthy controls, indicating that it can pick out AD from other degenerative brain conditions.

The enormous lag between the disease’s inception and the appearance of clinical symptoms presents one of the main challenges for diagnostics and treatment. By the time the first outward manifestations of Alzheimer’s appear (e.g. confusion, memory loss), Alzheimer’s has been ravaging the brain for decades. If the disease could be identified much earlier, even close to its origin, then perhaps it could be greatly slowed or even halted. Ideally, such a method should be appropriate for primary care settings, allowing a broad swath of the public to be accurately and regularly tested.

Given the need for a safe and reliable early diagnostic, many previous efforts have taken aim at the problem. However, not only have these efforts run aground, the accuracy of diagnosis even after the disease has entered its clinical phase remains poor.

In their new study, Paul Coleman, Alzheimer’s researcher at Arizona State University (Tempe, AZ, USA) and colleagues demonstrated that their new test has potential as an early diagnostic for AD. The results suggest that AD can be detected even before the onset of symptoms in persons at genetic risk for AD. Study collaborators include researchers from ASU, Mayo Clinic, University of Rochester, Banner Alzheimer Institute, and Barrow Neurological Institute.

“What we’ve done in our paper is to replicate our own work multiple times with different populations and even using different technologies,” said Prof. Coleman, “We also presented data showing the ability to detect people at risk of a future diagnosis for Alzheimer’s disease.”

The method accomplishes this by examining RNA in white blood cells (leucocytes). Alzheimer’s produces changes in the brain that can stimulate genes relating to conditions like stress and inflammation. Specific RNA transcripts from these genes appear in the blood. These transcripts were combined to form an early diagnostic biomarker panel.

The diagnostic precision of the new test is significant. Existing diagnostic screening results for known AD cases (identified through clinical and neuropathological factors), showed diagnostic sensitivity was between 71-87%, while specificity ranged from 44-70%. Such diagnoses are typically conducted in specialized facilities devoted to the study of Alzheimer’s, but the accuracy of standard diagnosis falls significantly in primary care settings. The result is that Alzheimer’s is generally detected (if at all) very late, a blueprint for treatment failure because the illness has already irreparably damaged the brain. Also, the high rate of misdiagnosis leads to frequently unnecessary and ineffective treatment.

In a fresh approach, the authors identify RNA transcripts in blood using two different RNA-analysis techniques: cDNA array and reverse transcriptase-RT-PCR. Results of the two methods were in close agreement and were further shown to be replicable across multiple sample populations. This allowed the researchers to design a consistent suite of transcripts that could be used to diagnose AD. This multivariate analysis demonstrated impressive accuracy in a number of critical experiments described in the paper.

The test identifies people carrying 2 copies of the APOE4 gen, a severe risk factor for developing Alzheimer’s. The test also includes transcript screening to identify those at risk for future cognitive impairment due to having at least one direct relative with AD. Careful analysis of RNA transcripts in blood samples distinguished early clinical AD, Parkinson’s disease (PD), and cognitively healthy patients. Both cDNA and RT-PCR methods managed to distinguish probable AD from normal controls with an accuracy of 93.8% when analyzing only 5 RNA transcripts. The author’s note that the accuracy may be even higher as some of the samples labeled as “false positives” may be from subjects who are actually positive for pre-symptomatic manifestations of Alzheimer’s.

In addition to RNA transcripts linked with inflammation and stress, the study examines a series of epigenetic transcripts (RNA sequences that have undergone post-transcriptional modification). Results showed a strong correlation between the presence of these epigenetic markers and AD, implying they too may provide a diagnostic tool.

Future refinements should sharpen the method’s ability to accurately identify AD at an early stage prior to the onset of clinical symptoms, and in a primary care setting with a simple blood extraction. Early diagnostics should eventually be combined with testing of new therapeutics aimed at early intervention. Intriguingly, one or more of the many existing drugs for AD that have failed in clinical trials, may later succeed in slowing or arresting AD if they can be delivered early enough in the disease process. Further, trials for new drugs targeting at-risk patients can be ramped up significantly if a simple, non-invasive blood test can replace costly imaging like PET scan.

The study, by Delvaux E et al, was published June 19, 2017, in the journal Neurobiology of Aging.

Related Links:
Arizona State University

Gold Member
Pharmacogenetics Panel
VeriDose Core Panel v2.0
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Typhoid Rapid Test
OnSite Typhoid IgG/IgM Combo Rapid Test
New
TRAb Immunoassay
Chorus TRAb

Print article

Channels

Clinical Chemistry

view channel
Image: Professor Nicole Strittmatter (left) and first author Wei Chen stand in front of the mass spectrometer with a tissue sample (Photo courtesy of Robert Reich/TUM)

Mass Spectrometry Detects Bacteria Without Time-Consuming Isolation and Multiplication

Speed and accuracy are essential when diagnosing diseases. Traditionally, diagnosing bacterial infections involves the labor-intensive process of isolating pathogens and cultivating bacterial cultures,... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: The new algorithms can help predict which patients have undiagnosed cancer (Photo courtesy of Adobe Stock)

Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer

Two newly developed advanced predictive algorithms leverage a person’s health conditions and basic blood test results to accurately predict the likelihood of having an undiagnosed cancer, including ch... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.