We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




AI Model Detects More Than 170 Cancer Types

By LabMedica International staff writers
Posted on 10 Jun 2025

Diagnosing brain tumors can be especially difficult when the tumor is located in a region where biopsies pose high risks. More...

In such scenarios, where obtaining tissue samples is not feasible, conventional diagnostic pathways fall short. Researchers have now developed an artificial intelligence (AI) model that identifies tumors with high accuracy using epigenetic data, offering a safer, faster alternative to invasive procedures.

This breakthrough by researchers at Charité - Universitätsmedizin Berlin (Berlin, Germany) was the result of a collaboration with multiple partners to create a non-invasive diagnostic tool that could deliver reliable tumor classification. The result was the AI model named crossNN, which is based on a simple neural network architecture. The model analyzes the epigenetic fingerprint of tumors—specific genetic features that can be obtained from sources like cerebrospinal fluid—without the need for surgical biopsies. These fingerprints are unique to each tumor and provide critical insight into tumor behavior, structure, and growth tendencies. crossNN was trained using a large dataset of reference tumors and later tested on over 5,000 tumor samples. The model achieved a diagnostic accuracy of 99.1% for brain tumors, outperforming existing AI tools and even traditional histological methods.

Furthermore, the researchers extended this approach to create another model capable of distinguishing more than 170 tumor types across different organs, with an impressive accuracy of 97.8%. This innovation holds particular promise for patients with rare tumors or those at high risk from biopsy procedures. By enabling molecular classification without tissue extraction, the AI model not only speeds up diagnosis but also supports personalized treatment planning. The tool may also play a key role in identifying candidates for experimental therapies tailored to rare tumor subtypes. The researchers emphasize the importance of transparency in clinical AI applications. For regulatory approval, the model must be fully explainable, meaning that clinicians can trace and understand how it reaches its conclusions.

"Although the architecture of our AI model is far more simple than previous approaches and therefore remains explainable, it delivers more precise predictions and therefore greater diagnostic certainty," said bioinformatician Dr. Sören Lukassen.

Related Links:
Charité - Universitätsmedizin Berlin


Gold Member
Quantitative POC Immunoassay Analyzer
EASY READER+
Serological Pipet Controller
PIPETBOY GENIUS
New
Laboratory Software
ArtelWare
New
Rapid Molecular Testing Device
FlashDetect Flash10
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








DIASOURCE (A Biovendor Company)

Channels

Clinical Chemistry

view channel
Image: The steps involved in the electric field-induced capture and release (EFIRM) assay (Photo courtesy of UCLA School of Dentistry)

Saliva-Based Cancer Detection Technology Eliminates Need for Complex Sample Preparation

Early detection of cancer and other serious diseases is crucial for effective treatment and improved outcomes, yet current diagnostic methods often involve invasive procedures and complex sample preparation.... Read more

Molecular Diagnostics

view channel
Image: The Lumipulse G pTau217/ß-Amyloid 1-42 Plasma Ratio is FDA-cleared for use in diagnosing Alzheimer’s (Photo courtesy of Fujirebio)

First FDA Cleared Blood Test for Alzheimer’s Diagnosis Marks Turning Point in Early Detection

Alzheimer’s disease is a progressive form of dementia that affects memory, cognition, and behavior, eventually interfering with daily activities. Early and accurate diagnosis is essential to improving... Read more

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: The 3D paper-based analytical device has shown high clinical accuracy for adult-onset immunodeficiency (Photo courtesy of National Taiwan University)

Paper-Based Device Accurately Detects Immune Defects in 10 Minutes

Patients with hidden immune defects are especially vulnerable to severe and persistent infections, often due to autoantibodies that block interferon-gamma (IFN-γ), a key molecule in immune defense.... Read more

Microbiology

view channel
Image: The groundbreaking salmonella antimicrobial resistance prediction platform has demonstrated 95% accuracy (Photo courtesy of Yujie You et al., DOI: 10.1016/j.eng.2025.01.013)

New Platform Leverages AI and Quantum Computing to Predict Salmonella Antimicrobial Resistance

Antimicrobial-resistant Salmonella strains are a growing public health concern due to the overuse of antimicrobials and the rise of genetic mutations. Accurate prediction of resistance is crucial for effective... Read more

Technology

view channel
Image: The Check4 gene-detection platform (Photo courtesy of IdentifySensors)

Electronic Biosensors Used to Detect Pathogens Can Rapidly Detect Cancer Cells

A major challenge in healthcare is the early and affordable detection of serious diseases such as cancer. Early diagnosis remains difficult due to the complexity of identifying specific genetic markers... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.