We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Ultrasound-Based Microscopy Technique to Help Diagnose Small Vessel Diseases

By LabMedica International staff writers
Posted on 07 Apr 2025

Clinical ultrasound, commonly used in pregnancy scans, provides real-time images of body structures. More...

It is one of the most widely used imaging techniques in medicine, but until recently, it had little application in imaging microscopic structures such as individual cells. Ultrasound can penetrate several centimeters into opaque mammalian tissue, offering non-invasive imaging of whole organs. This allows for the observation of cellular behavior in its natural environment, something that light-based methods struggle to achieve in larger living tissues. Now, scientists have successfully used ultrasound to image specifically labeled cells in three dimensions, marking the first time living cells inside whole organs were imaged across volumes the size of a sugar cube.

This was achieved by using a new ultrasound technique, called nonlinear sound sheet microscopy, by a team of scientists from Delft University of Technology (Delft, Netherlands), along with collaborators at California Institute of Technology (Caltech, Pasadena, CA, USA). Light sheet microscopy, currently the leading technology for imaging living cells in 3D—such as during embryo development—has its limitations, as it can only be used on translucent or thin specimens, with light unable to penetrate more than 1 mm into opaque tissue. The breakthrough in ultrasound imaging was facilitated by the discovery of a sound-reflecting probe in the Shapiro Lab at Caltech. This probe consists of nanoscale, gas-filled vesicles that illuminate in ultrasound images, allowing cells to become visible. These vesicles have a protein shell, and their brightness can be adjusted by engineering their composition. The team used these gas vesicles to track cancer cells in their study.

In addition to tracking individual cells, the researchers utilized ultrasound in combination with microbubbles as probes circulating in the bloodstream to detect brain capillaries. To their knowledge, nonlinear sound sheet microscopy is the first technique that can observe capillaries in living brains. This breakthrough has significant potential for diagnosing small vessel diseases in patients. Since microbubble probes are already approved for clinical use, this technique could be implemented in hospitals within a few years. Beyond its clinical applications, the researchers believe that sound-sheet microscopy will have a major impact on biological research, particularly in the development of new cancer treatments.

“Our imaging technique can distinguish healthy versus cancer tissue,” said lead researcher David Maresca. “Furthermore, it can visualize the necrotic core of a tumor; the center of the tumor where cells start dying due to a lack of oxygen. Thus, it could assist in monitoring the progression of cancer and the response to treatment.”

Related Links:
Delft University of Technology
Caltech


Gold Member
Veterinary Hematology Analyzer
Exigo H400
Gold Member
Serological Pipet Controller
PIPETBOY GENIUS
New
Plasmodium Test
Plasmodium DNA Real Time PCR Kit
New
Varicella Zoster Test
ZEUS ELISA Varicella Zoster IgG Test System
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: New biomarkers could someday make it easy to spot Parkinson’s disease in a patient’s blood sample (Photo courtesy of Shutterstock)

Unique Blood-Based Genetic Signature Can Diagnose Parkinson’s Disease

Parkinson's disease is primarily recognized for its impact on the central nervous system. Recent scientific progress has shifted focus to understanding the involvement of the immune system in the onset... Read more

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: Custom hardware and software for the real-time detection of immune cell biophysical signatures in NICU (Photo courtesy of Pediatric Research, DOI:10.1038/s41390-025-03952-y)

First-Of-Its-Kind Device Profiles Newborns' Immune Function Using Single Blood Drop

Premature infants are highly susceptible to severe and life-threatening conditions, such as sepsis and necrotizing enterocolitis (NEC). Newborn sepsis, which is a bloodstream infection occurring in the... Read more

Pathology

view channel
Image: The innovative doublet configuration and annular illumination overcome traditional metalens limitations (Photo courtesy of Tao Li and Jiacheng Sun/Nanjing University)

High-Resolution Metalens Doublet Microscope to Enhance Diagnostic Capabilities

Metalenses mark a groundbreaking leap in optical technology. Unlike traditional microscope objectives that rely on curved glass surfaces, metalenses utilize nanoscale structures to manipulate light at... Read more

Technology

view channel
Image: Concept of biosensor integrated into hygiene pads enabling direct semi-quantitative analysis of biomarkers in unprocessed menstruation blood (Photo courtesy of Dosnon, L et al. DOI: 10.1002/advs.202505170)

First Ever Technology Recognizes Disease Biomarkers Directly in Menstrual Blood in Sanitary Towels

Over 1.8 billion people menstruate worldwide, yet menstrual blood has been largely overlooked in medical practice. This blood contains hundreds of proteins, many of which correlate with their concentration... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.