Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Carbon Nanotubes Help Build Highly Accurate Sensors for Continuous Health Monitoring

By LabMedica International staff writers
Posted on 17 Mar 2025

Current sensors can measure various health indicators, such as blood glucose levels, in the body. More...

However, there is a need to develop more accurate and sensitive sensor materials that can detect lower concentrations of certain substances. For instance, female hormones are present in the body at concentrations millions of times lower than glucose. To effectively study hormone fluctuations, highly sensitive sensors are required, and this necessitates a significant improvement in the accuracy of biosensors. In a new study, researchers have developed nanomaterials that could contribute to more accurate sensors for future healthcare applications. These advancements could lead to continuous health monitoring, enabled by carbon nanotubes.

Researchers at the University of Turku (Turku, Finland) have successfully created sensors using single-wall carbon nanotubes, which are well-suited for such applications. Single-wall carbon nanotubes are made from a single atomic layer of graphene. Until now, a major challenge in developing these materials has been that the nanotube manufacturing process yields a mix of conductive and semi-conductive nanotubes, which vary in chirality—the way the graphene sheet is rolled into the cylindrical shape of the nanotube. The electrical and chemical properties of nanotubes are highly dependent on their chirality. The research team developed methods to separate nanotubes with different chiralities, and in this study, they successfully distinguished between two nanotubes with similar chiralities while identifying their typical electrochemical properties.

By purifying and separating the carbon nanotubes, the researchers were able to test their differences as sensor materials. Although nanotubes are typically used in hybrid sensors when combined with other surfactants, the current study focused on sensors made entirely from nanotubes. Furthermore, the researchers gained precise control over the concentration of nanotubes, allowing them to compare the properties of different chiralities. One key finding was that one type of nanotube (6.5) was more efficient than the other (6.6) in adsorbing dopamine. Adsorption, which refers to the ability of a material to bind atoms or molecules to its surface, is especially crucial when the concentrations of the substances being measured are very low. The study's results are the first to demonstrate that the electrochemical response of the sensor is influenced by chirality. In future research, computational models could be employed to determine the optimal chirality for measuring each molecule.

“The result is significant because by being able to precisely control the properties of carbon nanotubes we can fine-tune the ability of the sensor material to detect changes in specific substances," said Doctoral Researcher Ju-Yeon Seo.

Related Links:
University of Turku


Gold Member
Automatic Hematology Analyzer
DH-800 Series
Portable Electronic Pipette
Mini 96
Urine Chemistry Control
Dropper Urine Chemistry Control
Gold Member
Immunochromatographic Assay
CRYPTO Cassette
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: Urine samples can indicate lupus nephritis without the need for repeat and painful renal biopsies (Photo courtesy of Shutterstock)

Urine Test Could Replace Painful Kidney Biopsies for Lupus Patients

Lupus is an autoimmune disorder that causes the immune system to attack the body’s own tissues and organs. Among the five million people living with lupus globally, nearly half develop lupus nephritis,... Read more

Hematology

view channel
Image: New evidence shows viscoelastic testing can improve assessment of blood clotting during postpartum hemorrhage (Photo courtesy of 123RF)

Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage

Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more

Immunology

view channel
Image: When assessing the same lung biopsy sample, research shows that only 18% of pathologists will agree on a TCMR diagnosis (Photo courtesy of Thermo Fisher)

Molecular Microscope Diagnostic System Assesses Lung Transplant Rejection

Lung transplant recipients face a significant risk of rejection and often require routine biopsies to monitor graft health, yet assessing the same biopsy sample can be highly inconsistent among pathologists.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.