We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Carbon Nanotubes Help Build Highly Accurate Sensors for Continuous Health Monitoring

By LabMedica International staff writers
Posted on 17 Mar 2025

Current sensors can measure various health indicators, such as blood glucose levels, in the body. More...

However, there is a need to develop more accurate and sensitive sensor materials that can detect lower concentrations of certain substances. For instance, female hormones are present in the body at concentrations millions of times lower than glucose. To effectively study hormone fluctuations, highly sensitive sensors are required, and this necessitates a significant improvement in the accuracy of biosensors. In a new study, researchers have developed nanomaterials that could contribute to more accurate sensors for future healthcare applications. These advancements could lead to continuous health monitoring, enabled by carbon nanotubes.

Researchers at the University of Turku (Turku, Finland) have successfully created sensors using single-wall carbon nanotubes, which are well-suited for such applications. Single-wall carbon nanotubes are made from a single atomic layer of graphene. Until now, a major challenge in developing these materials has been that the nanotube manufacturing process yields a mix of conductive and semi-conductive nanotubes, which vary in chirality—the way the graphene sheet is rolled into the cylindrical shape of the nanotube. The electrical and chemical properties of nanotubes are highly dependent on their chirality. The research team developed methods to separate nanotubes with different chiralities, and in this study, they successfully distinguished between two nanotubes with similar chiralities while identifying their typical electrochemical properties.

By purifying and separating the carbon nanotubes, the researchers were able to test their differences as sensor materials. Although nanotubes are typically used in hybrid sensors when combined with other surfactants, the current study focused on sensors made entirely from nanotubes. Furthermore, the researchers gained precise control over the concentration of nanotubes, allowing them to compare the properties of different chiralities. One key finding was that one type of nanotube (6.5) was more efficient than the other (6.6) in adsorbing dopamine. Adsorption, which refers to the ability of a material to bind atoms or molecules to its surface, is especially crucial when the concentrations of the substances being measured are very low. The study's results are the first to demonstrate that the electrochemical response of the sensor is influenced by chirality. In future research, computational models could be employed to determine the optimal chirality for measuring each molecule.

“The result is significant because by being able to precisely control the properties of carbon nanotubes we can fine-tune the ability of the sensor material to detect changes in specific substances," said Doctoral Researcher Ju-Yeon Seo.

Related Links:
University of Turku


Gold Member
Collection and Transport System
PurSafe Plus®
POC Helicobacter Pylori Test Kit
Hepy Urease Test
New
Gold Member
Automatic CLIA Analyzer
Shine i9000
Clinical Chemistry System
P780
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: Residual leukemia cells may predict long-term survival in acute myeloid leukemia (Photo courtesy of Shutterstock)

MRD Tests Could Predict Survival in Leukemia Patients

Acute myeloid leukemia is an aggressive blood cancer that disrupts normal blood cell production and often relapses even after intensive treatment. Clinicians currently lack early, reliable markers to predict... Read more

Immunology

view channel
Image: The simple blood marker can predict which lymphoma patients will benefit most from CAR T-cell therapy (Photo courtesy of Shutterstock)

Routine Blood Test Can Predict Who Benefits Most from CAR T-Cell Therapy

CAR T-cell therapy has transformed treatment for patients with relapsed or treatment-resistant non-Hodgkin lymphoma, but many patients eventually relapse despite an initial response. Clinicians currently... Read more

Pathology

view channel
Image: Determining EG spiked into medicinal syrups: Zoomed-in images of the pads on the strips are shown. The red boxes show where the blue color on the pad could be seen when visually observed (Arman, B.Y., Legge, I., Walsby-Tickle, J. et al. https://doi.org/10.1038/s41598-025-26670-1)

Rapid Low-Cost Tests Can Prevent Child Deaths from Contaminated Medicinal Syrups

Medicinal syrups contaminated with toxic chemicals have caused the deaths of hundreds of children worldwide, exposing a critical gap in how these products are tested before reaching patients.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.