We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Events

02 Jun 2025 - 04 Jun 2025
11 Jun 2025 - 13 Jun 2025

Screening Tool Detects Multiple Health Conditions from Single Blood Drop

By LabMedica International staff writers
Posted on 22 Jul 2024

Infrared spectroscopy, a method using infrared light to study the molecular composition of substances, has been a foundational tool in chemistry for decades, functioning similarly to a molecular fingerprinting system via a device known as a spectrometer. More...

When utilized on complex biofluids like blood plasma, this physico-chemical technique provides in-depth molecular insights, indicating its potential for medical diagnostics. Despite its established role in chemistry and industry, infrared spectroscopy has yet to become a standard tool in medical diagnostics. To tackle this issue, scientists have developed a diagnostic tool that employs infrared light and machine learning to identify multiple health conditions in just one measurement at the population level.

The team from the BIRD group at Ludwig Maximilian University of Munich (LMU, Munich, Germany) had previously worked on methods to measure human plasma. In their most recent study, they introduced infrared molecular fingerprinting to a naturally diverse group, analyzing blood from thousands of participants in the KORA study—a long-standing health research project based in Augsburg, Germany. Adults from this study were selected randomly for medical examinations and blood donations, giving the KORA study a new dimension and purpose. Over 5,000 blood plasma samples were assessed using Fourier transform infrared (FTIR) spectroscopy.

This approach involved analyzing the blood samples with infrared light to obtain molecular fingerprints, which were then examined using machine learning to correlate with existing medical data. The findings revealed that these fingerprints could facilitate quick health screenings. The multi-task algorithm was capable of differentiating various health states, including abnormal blood lipid levels, changes in blood pressure, and the presence of type-2 diabetes, including its precursor, pre-diabetes, which often goes unnoticed. Published in Cell Reports Medicine 2024, the research highlighted the algorithm's ability to also identify individuals who were healthy and remained so over the years. This discovery was notable because finding entirely healthy individuals in a random population is challenging due to the commonality of health variations and the natural changes that occur over time.

Traditionally, different tests are required for each condition, but this new method identifies multiple health issues simultaneously, not just one at a time. The system not only identifies healthy people but also detects complex conditions involving multiple diseases and can predict the onset of metabolic syndrome years before symptoms manifest, offering a chance for early intervention. This foundational study proposes that infrared molecular fingerprinting could become an integral part of routine health screenings, allowing for more effective detection and management of conditions, particularly metabolic disorders like diabetes and abnormal cholesterol levels.

As this technology evolves and its capabilities expand through further technological development and clinical studies, more health conditions could be added to its diagnostic range. This advancement may lead to personalized health monitoring, where individuals regularly assess their health status to identify potential problems early on. Ultimately, the integration of infrared spectroscopy with machine learning is poised to revolutionize health diagnostics, providing a new, efficient means to monitor health globally using just a drop of blood and infrared light.

Related Links:
LMU


Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
Gold Member
Serological Pipet Controller
PIPETBOY GENIUS
New
UHF RFID Tag & Inlay
AD-327 U9 ETSI Pure 95
New
Uric Acid Meter
PA-16
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: New biomarkers could someday make it easy to spot Parkinson’s disease in a patient’s blood sample (Photo courtesy of Shutterstock)

Unique Blood-Based Genetic Signature Can Diagnose Parkinson’s Disease

Parkinson's disease is primarily recognized for its impact on the central nervous system. Recent scientific progress has shifted focus to understanding the involvement of the immune system in the onset... Read more

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: Custom hardware and software for the real-time detection of immune cell biophysical signatures in NICU (Photo courtesy of Pediatric Research, DOI:10.1038/s41390-025-03952-y)

First-Of-Its-Kind Device Profiles Newborns' Immune Function Using Single Blood Drop

Premature infants are highly susceptible to severe and life-threatening conditions, such as sepsis and necrotizing enterocolitis (NEC). Newborn sepsis, which is a bloodstream infection occurring in the... Read more

Pathology

view channel
Image: The new tool is designed for accurate detection of structural variations in clinical samples (Photo courtesy of Karen Arnott/EMBL-EBI and Isabel Romero Calvo/EMBL)

ML Algorithm Accurately Identifies Cancer-Specific Structural in Long-Read DNA Sequencing Data

Long-read sequencing technologies are designed to analyze long, continuous stretches of DNA, offering significant potential to enhance researchers' abilities to detect complex genetic changes in cancer genomes.... Read more

Technology

view channel
Image: Concept of biosensor integrated into hygiene pads enabling direct semi-quantitative analysis of biomarkers in unprocessed menstruation blood (Photo courtesy of Dosnon, L et al. DOI: 10.1002/advs.202505170)

First Ever Technology Recognizes Disease Biomarkers Directly in Menstrual Blood in Sanitary Towels

Over 1.8 billion people menstruate worldwide, yet menstrual blood has been largely overlooked in medical practice. This blood contains hundreds of proteins, many of which correlate with their concentration... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.