We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Events

09 Apr 2024 - 12 Apr 2024
15 Apr 2024 - 17 Apr 2024
23 Apr 2024 - 26 Apr 2024

Rapid COVID Test Developed Solves Problems With LAMP Sensitivity

By LabMedica International staff writers
Posted on 14 Feb 2022
Print article
Image: Equipment required for the smaRT-LAMP testing technology would cost less than USD100 (Photo courtesy of Michael Mahan, PhD)
Image: Equipment required for the smaRT-LAMP testing technology would cost less than USD100 (Photo courtesy of Michael Mahan, PhD)

Researchers from the University of California, Santa Barbara have developed an isothermal amplification-based SARS-CoV-2 and influenza test that could retail for as little as $2 while addressing a key problem with loop-mediated isothermal amplification tests — false positive results.

Loop-mediated isothermal amplification (LAMP) diagnostics have gained attention for pathogen detection because they do not require sophisticated, expensive instrumentation or highly trained personnel for operation. Five principal tenets of point-of-care (POC) clinical diagnostics include speed, sensitivity, affordability, scalability, and accessibility, without a concomitant need of specialized and costly equipment.

Numerous methods for the detection of SARS-CoV-2 virus, including molecular, antigen, and serology tests, are currently in use. Although molecular methods such as polymerase chain reaction (PCR) are rapid and sensitive, they generally require access to specialized and costly laboratory instrumentation and highly trained personnel, and they are technologically complex for POC applications or resource-limited settings.

Molecular Biotechnologists at the University of California, Santa Barbara (Santa Barbara, CA, USA) and their colleagues enrolled two subgroups of participants (symptomatic and asymptomatic) at Santa Barbara Cottage Hospital (Santa Barbara, CA, USA). The symptomatic group consisted of 20 recruited patients who tested positive for SARS-CoV-2 with symptoms; 30 asymptomatic patients were recruited from the same community, through negative admission screening tests for SARS-CoV-2. Among the 50 eligible participants with no prior SARS-CoV-2 infection included in the study, 29 were men. The mean age was 57 years (range, 21 to 93 years).

The smartphone-based real-time loop-mediated isothermal amplification (smaRT-LAMP) was first optimized for analysis of human saliva samples spiked with either SARS-CoV-2 or influenza A or B virus. These results then were compared with those obtained by side-by-side analysis of spiked samples using the Centers for Disease Control and Prevention (CDC, Atlanta, GA, USA) criterion-standard reverse transcriptase–quantitative polymerase chain reaction (RT-qPCR) assay. Next, both assays were used to test for SARS-CoV-2 and influenza viruses present in blinded clinical saliva samples obtained from 50 hospitalized patients.

The investigators reported that SmaRT-LAMP exhibited 100% concordance (50/50 patient samples) with the CDC criterion-standard diagnostic for SARS-CoV-2 sensitivity (20/20 positive and 30/30 negative) and for quantitative detection of viral load. This platform also met the CDC criterion standard for detection of clinically similar influenza A and B viruses in 20 spiked saliva samples, and in saliva samples from hospitalized patients (50/50 negative). The smartphone-based LAMP assay was rapid (25 minutes), sensitive (1,000 copies/mL), low-cost (< USD 7/test), and scalable (96 samples/phone).

The authors concluded that the smartphone-based LAMP assay integrates reliable diagnostics with advantages of smartphone detection, offering an inexpensive diagnostic platform for SARS-CoV-2 and influenza A and B viruses that match the CDC RT-qPCR criterion standards. The study was published on January 28, 2022 in the journal JAMA Network Open.

Related Links:
University of California, Santa Barbara 
Santa Barbara Cottage Hospital
Centers for Disease Control and Prevention 

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
HLX
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
Systemic Autoimmune Testing Assay
BioPlex 2200 ANA Screen with MDSS

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: MOF materials efficiently enrich cfDNA and cfRNA in blood through simple operational process (Photo courtesy of Science China Press)

Blood Circulating Nucleic Acid Enrichment Technique Enables Non-Invasive Liver Cancer Diagnosis

The ability to diagnose diseases early can significantly enhance the effectiveness of clinical treatments and improve survival rates. One promising approach for non-invasive early diagnosis is the use... Read more

Hematology

view channel
Image: The low-cost portable device rapidly identifies chemotherapy patients at risk of sepsis (Photo courtesy of 52North Health)

POC Finger-Prick Blood Test Determines Risk of Neutropenic Sepsis in Patients Undergoing Chemotherapy

Neutropenia, a decrease in neutrophils (a type of white blood cell crucial for fighting infections), is a frequent side effect of certain cancer treatments. This condition elevates the risk of infections,... Read more

Pathology

view channel
Image: The OvaCis Rapid Test discriminates benign from malignant epithelial ovarian cysts (Photo courtesy of INEX)

Intra-Operative POC Device Distinguishes Between Benign and Malignant Ovarian Cysts within 15 Minutes

Ovarian cysts represent a significant health issue for women globally, with up to 10% experiencing this condition at some point in their lives. These cysts form when fluid collects within a thin membrane... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.