We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Events

09 Apr 2024 - 12 Apr 2024
15 Apr 2024 - 17 Apr 2024
23 Apr 2024 - 26 Apr 2024

MCDA-LFB Assay Developed for Rapid Detection of Legionnaires’ Disease

By LabMedica International staff writers
Posted on 18 Jan 2022
Print article
Image: Optimized reaction time for Multiple Cross Displacement Amplification (MCDA-LFB) assay to detect Legionella pneumophila. The best sensitivity was seen when the amplification lasted for 35 minutes (Photo courtesy of Zhejiang Provincial People’s Hospital)
Image: Optimized reaction time for Multiple Cross Displacement Amplification (MCDA-LFB) assay to detect Legionella pneumophila. The best sensitivity was seen when the amplification lasted for 35 minutes (Photo courtesy of Zhejiang Provincial People’s Hospital)
Legionella pneumophila is an opportunistic waterborne pathogen of significant public health problems, which can cause serious human respiratory diseases (Legionnaires’ disease). Legionnaires’ disease is characterized by severe lung infection symptoms, including severe pneumonia with a high fatality rate.

Diagnostic methods, including traditional bacterial culture methods, serological testing, urine antigen detection and nucleic acid amplification techniques, have been developed and used to detect Legionnaires’ disease. Multiple cross displacement amplification (MCDA), a novel isothermal nucleic acid amplification technique, has been applied in detecting many bacterial agents.

Respiratory Medicine Specialists at the Zhejiang Provincial People’s Hospital (Hangzhou; People’s Republic of China) developed a MCDA coupled with Nanoparticles-based Lateral Flow Biosensor (MCDA-LFB) for the rapid detection of L. pneumophila. A total of 40 bacterial strains were used in this assay, including 24 strains of L. pneumophila and 16 strains of non-L. pneumophila. The team used traditional bacterial culture method, conventional PCR detection and MCDA-LFB method to test 88 specimens suspected of L. pneumophila. A set of 10 primers based on the L. pneumophila specific mip gene to specifically identify 10 different target sequence regions of L. pneumophila was designed.

The optimal time and temperature for amplification are 57 minutes and 65 °C. The limit of detection (LoD) is 10 fg in pure cultures of L. pneumophila. No cross-reaction was obtained and the specificity of MCDA-LFB assay was 100%. The whole process of the assay, including 20 minutes of DNA preparation, 35 minutes of L. pneumophila-MCDA reaction, and 2 minutes of sensor strip reaction, took a less than 1 hour. Among 88 specimens for clinical evaluation, five (5.68%) samples were L. pneumophila-positive by MCDA-LFB and traditional culture method, while four (4.55%) samples were L. pneumophila-positive by PCR method targeting mip gene. Compared with culture method, the diagnostic accuracy of MCDA-LFB method was higher.

The authors concluded that the L. pneumophila-MCDA-LFB method they successfully developed is a simple, fast, reliable, and sensitive diagnostic tool, which can be widely used for the identification of L. pneumophila in basic and clinical laboratories. The study was published on January 8, 2022 in the journal BMC Microbiology.

Related Links:
Zhejiang Provincial People’s Hospital

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
HLX
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Xylazine Immunoassay Test
Xylazine ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: MOF materials efficiently enrich cfDNA and cfRNA in blood through simple operational process (Photo courtesy of Science China Press)

Blood Circulating Nucleic Acid Enrichment Technique Enables Non-Invasive Liver Cancer Diagnosis

The ability to diagnose diseases early can significantly enhance the effectiveness of clinical treatments and improve survival rates. One promising approach for non-invasive early diagnosis is the use... Read more

Hematology

view channel
Image: The low-cost portable device rapidly identifies chemotherapy patients at risk of sepsis (Photo courtesy of 52North Health)

POC Finger-Prick Blood Test Determines Risk of Neutropenic Sepsis in Patients Undergoing Chemotherapy

Neutropenia, a decrease in neutrophils (a type of white blood cell crucial for fighting infections), is a frequent side effect of certain cancer treatments. This condition elevates the risk of infections,... Read more

Pathology

view channel
Image: The OvaCis Rapid Test discriminates benign from malignant epithelial ovarian cysts (Photo courtesy of INEX)

Intra-Operative POC Device Distinguishes Between Benign and Malignant Ovarian Cysts within 15 Minutes

Ovarian cysts represent a significant health issue for women globally, with up to 10% experiencing this condition at some point in their lives. These cysts form when fluid collects within a thin membrane... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.