We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Technopath Clinical Diagnostics

Download Mobile App


ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.

Breath Test Can Identify COVID-19 in Critically Ill Patients

By LabMedica International staff writers
Posted on 17 Nov 2021
Print article
Image: Breath Test Can Identify COVID-19 in Critically Ill Patients and Asymptomatic Individuals (Photo courtesy of Ohio State University Wexner Medical Center)
Image: Breath Test Can Identify COVID-19 in Critically Ill Patients and Asymptomatic Individuals (Photo courtesy of Ohio State University Wexner Medical Center)
The coronaviruses known to infect humans generally only caused mild upper respiratory tract infectious symptoms. They are also known to delay the innate immune response to infection, and they have affinity for primary epithelial cells

A common feature of respiratory viral infections is the release of inflammatory cytokines. These cytokines led to the production and release of volatile organic compounds (VOC), nitric oxide (NO), and ammonia (NH4). Novel breathalyzer technology utilizes a single selective, resistive chemosensor made of a catalytically active, semiconducting material, targeting NO and ammonia molecules in breath.

Bioengineers and other scientists associated with the Ohio State University Wexner Medical Center (Columbus, OH, USA) have developed a COVID-19 breathalyzer which is an electronic device that uses a single catalytically active, resistive sensor that is highly selective to NO. The sensitivity of the γ-phase tungsten trioxide (WO3) sensor to NO, selectivity and response in the presence of various interfering compounds have been demonstrated before and are shown here for the specific conditions of this study, simulating human exhaled breath having various concentrations of NO and of the most abundant VOCs in breath: acetone, isoprene, and ammonia.

The team followed 46 patients who were admitted to the intensive care unit (ICU) with acute respiratory failure that required mechanical ventilation. Half of the patients had an active COVID-19 infection and the remaining half did not. All patients had a PCR COVID-19 test when they were admitted to the unit. The scientists collected samples from the exhalation port of the ventilator in 1-liter breath bags (Tedlar bags, CEL Scientific, Cerritos, CA, USA) from the patients on day 1, 3, 7, and 10 of their inpatient stay. The breath bag samples were tested within four hours of sample collection in a laboratory.

The investigators reported that the breathalyzer detected high exhaled nitric oxide (NO) concentration with a distinctive pattern for patients with active COVID-19 pneumonia. The COVID-19 “breath print” has the pattern of the small Greek letter omega (ω). The “breath print” identified patients with COVID-19 pneumonia with 88% accuracy upon their admission to the ICU. Furthermore, the sensitivity index of the breath print (which scales with the concentration of the key biomarker ammonia) appears to correlate with duration of COVID-19 infection. The negative predictive value of the breathalyzer was excellent at 90%.

Matthew C. Exline, MD, a Pulmonologist and senior author of the study, said, “The gold standard for diagnosis of COVID-19 is a polymerase chain reaction (PCR) test that requires an uncomfortable nasal swab and time in a laboratory to process the sample and obtain the results. The breathalyzer test used in our study can detect COVID-19 within 15 seconds.”

The authors concluded that the use of breathalyzer technology to rapidly diagnose patients with respiratory infections has the potential to greatly improve our ability to rapidly screen both patients and asymptomatic individuals. This study is the first to show the practical application of this emerging technology in a homogenous group of patients with a single infection. The study was published on October 28, 2021 in the journal PLOS ONE.

Related Links:
Ohio State University Wexner Medical Center
CEL Scientific

Gold Supplier
SARS-CoV-2 S-IgG Antibody Assay
Lumipulse G SARS-CoV-2 S-IgG
6-Channel Viscoelastometry Analyzer
Molecular Diagnostic Platform
Silver Supplier
Bacteriuria Test Strips
MAST Bacteruritest Strips

Print article


Molecular Diagnostics

view channel
Image: Absence of nuclear immunohistochemical staining of MSH2 protein (A) and presence of MLH1 protein (B) in urothelial cell carcinoma of the urinary bladder of a patient carrying a germline MSH2 mutation. Observe the nuclear staining in stromal cells as an internal control (Photo courtesy of Radboud University Nijmegen Medical Centre)

Simple Urine Test Detects Urothelial Cancers in Lynch Syndrome Patients

Lynch Syndrome (LS) is an inherited genetic disorder that carries a high risk of cancer. LS is caused by mutations affecting MLH1, MSH2, MSH6 or PMS2 genes. More than one in 300 people have LS but most... Read more


view channel
Image: The Gazelle Hb Variant Test for screening, diagnosis and management of sickle cell disease and related hemoglobinopathies at the point of care (Photo courtesy of Hemex Health)

Point-of-Care Device Accurately Rapidly Diagnoses Sickle Cell Disease

Hemoglobinopathies are the most common autosomal hereditary disorders. Approximately 7% of the global population carries hemoglobin gene mutation including structural hemoglobin variants like sickle hemoglobin... Read more


view channel
Image: The IMMULITE 2000 XPi Immunoassay System provides multiple tests on a single, easy-to-use analyzer, including the thyroid-stimulating immunoglobulin assay (Photo courtesy of Siemens Healthcare)

Immunoassays Evaluated for Thyroid-Stimulating Receptor Antibody in Graves’ Disease

Graves' disease (GD), also known as toxic diffuse goiter, is an autoimmune disease that affects the thyroid. It frequently results in and is the most common cause of hyperthyroidism and it also often results... Read more


view channel
Image: The sciREADER CL2 enables high quality digital colorimetric imaging of various support formats (Photo courtesy of SCIENION)

Multiplex Immunoassay Developed for Confirmation and Typing of HTLV Infections

Human T-Cell Lymphotropic Viruses (HTLV) type 1 and type 2 account for an estimated five to 10 million infections worldwide and are transmitted through breast feeding, sexual contacts and contaminated... Read more


view channel

AI Accurately Detects and Diagnoses Colorectal Cancer from Tissue Scans As Well or Better Than Pathologists

Artificial intelligence (A) can accurately detect and diagnose colorectal cancer from tissue scans as well or better than pathologists, according to a new study. The study, which was conducted by researchers... Read more


view channel

Global Point of Care Diagnostics Market to Top USD 35 Billion by 2027 Due to Rising Diabetic Cases

The global point of care diagnostics market is projected to grow at a CAGR of close to 6% from more than USD 23 billion in 2020 to over USD 35 billion by 2027, driven by an increase in the number of diabetic... Read more
Copyright © 2000-2021 Globetech Media. All rights reserved.