Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Nanodiamonds Dramatically Boost Immunoassay Sensitivity

By LabMedica International staff writers
Posted on 08 Dec 2020
Incorporation of a specific class of nanodiamond into lateral flow immunoassays was shown to increase the sensitivity of this method by at least five orders of magnitude.

Nanodiamonds or diamond nanoparticles are diamonds with a size below one micrometer, which are commercially produced by detonation synthesis. More...
A class of fluorescent nanodiamonds containing nitrogen-vacancy defects has attractive properties for in vitro biosensing, including brightness, low cost, and selective manipulation of their emission.

Investigators at University College London (United Kingdom) studied fluorescent nanodiamonds as an ultrasensitive label for in vitro diagnostics, using a microwave field to modulate emission intensity and frequency-domain analysis to separate the signal from background autofluorescence, which typically limits sensitivity. Since the quantum properties of fluorescent nanodiamonds allow their emission to be selectively modulated, the signal can be fixed at a set frequency using a microwave field and can be efficiently separated from the background fluorescence.

Using lateral flow immunoassay as the experimental system, the investigators achieved a detection limit of 8.2 × 10−19 molar for a biotin–avidin model, 100,000 times more sensitive than that obtained using gold nanoparticles. Furthermore, single-copy detection of HIV-1 RNA could be achieved with the addition of a 10-minute isothermal recombinase polymerase amplification step. This method was then demonstrated using a clinical plasma sample with an extraction step.

Senior author Dr. Rachel McKendry, professor of biomedical nanotechnology at University College London, said, "Our proof-of-concept study shows how quantum technologies can be used to detect ultralow levels of virus in a patient sample, enabling much earlier diagnosis. We have focused on the detection of HIV, but our approach is very flexible and can be easily adapted to other diseases and biomarker types. We are working on adapting our approach to COVID-19. We believe that this transformative new technology will benefit patients and protect populations from infectious diseases."

The next step will be to adapt the assay for use a smartphone or portable fluorescence reader, which would allow the test to be performed in low-resource settings.

The use of nanodiamonds to increase the sensitivity of lateral flow assays was described in the November 25, 2020, online edition of the journal Nature.

Related Links:
University College London


New
Gold Member
Quality Control Material
iPLEX Pro Exome QC Panel
POC Helicobacter Pylori Test Kit
Hepy Urease Test
New
Automated Biochemical Analyzer
iBC 900
New
Silver Member
Rapid Test Reader
DIA5000
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Immunology

view channel
Image: The test could streamline clinical decision-making by identifying ideal candidates for immunotherapy upfront (Xiao, Y. et al. Cancer Biology & Medicine July 2025, 20250038)

Blood Test Predicts Immunotherapy Efficacy in Triple-Negative Breast Cancer

Triple-negative breast cancer (TNBC) is an aggressive subtype lacking targeted therapies, making immunotherapy a promising yet unpredictable option. Current biomarkers such as PD-L1 expression or tumor... Read more

Microbiology

view channel
Image: New diagnostics could predict a woman’s risk of a common sexually transmitted infection (Photo courtesy of 123RF)

New Markers Could Predict Risk of Severe Chlamydia Infection

Chlamydia trachomatis is a common sexually transmitted infection that can cause pelvic inflammatory disease, infertility, and other reproductive complications when it spreads to the upper genital tract.... Read more

Technology

view channel
Image: The sensor can help diagnose diabetes and prediabetes on-site in a few minutes using just a breath sample (Photo courtesy of Larry Cheng/Penn State)

Graphene-Based Sensor Uses Breath Sample to Identify Diabetes and Prediabetes in Minutes

About 37 million U.S. adults live with diabetes, and one in five is unaware of their condition. Diagnosing diabetes often requires blood draws or lab visits, which are costly and inconvenient.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.