We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Events

09 Apr 2024 - 12 Apr 2024
15 Apr 2024 - 17 Apr 2024
23 Apr 2024 - 26 Apr 2024

Smartphone-Based Technique Helps Doctors Assess Hematological Disorders

By LabMedica International staff writers
Posted on 01 Jun 2020
Print article
Image: High-quality spectra acquired by the image-guided hyperspectral line-scanning system and the mHematology mobile application. The device assesses blood hemoglobin without drawing blood (Photo courtesy of Purdue University).
Image: High-quality spectra acquired by the image-guided hyperspectral line-scanning system and the mHematology mobile application. The device assesses blood hemoglobin without drawing blood (Photo courtesy of Purdue University).
As one of the most common clinical laboratory tests, blood hemoglobin tests are routinely ordered as an initial screening of reduced red blood cell production to examine the general health status before other specific examinations.

Blood hemoglobin tests are extensively performed for a variety of patient care needs, such as anemia detection as a cause of other underlying diseases, assessment of hematologic disorders, transfusion initiation, hemorrhage detection after traumatic injury, and acute kidney injury.

Biomedical Engineers at Purdue University (West Lafayette, IN, USA) and their colleagues have developed a way to use smartphone images of a person's eyelids to assess blood hemoglobin levels. The ability to perform one of the most common clinical laboratory tests without a blood draw could help reduce the need for in-person clinic visits, make it easier to monitor patients who are in critical condition, and improve care in low- and middle-income countries where access to testing laboratories is limited.

The scientists tested the new technique, called mHematology, with 153 volunteers who were referred for conventional blood tests at the Moi University Teaching and Referral Hospital (Eldoret, Kenya). They used data from a randomly selected group of 138 patients to train the algorithm, and then tested the mobile health app with the remaining 15 volunteers. The results showed that the mobile health test could provide measurements comparable to traditional blood tests over a wide range of blood hemoglobin values.

The team created a mobile health version of the analysis by using an approach known as spectral super-resolution spectroscopy. This technique uses software to virtually convert photos acquired with low-resolution systems such as a smartphone camera into high-resolution digital spectral signals. They selected the inner eyelid as a sensing site because microvasculature is easily visible there; it is easy to access and has relatively uniform redness. The inner eyelid is also not affected by skin color, which eliminates the need for any personal calibrations. The prediction errors for the smartphone technique were within 5% to 10% of those measured with clinical laboratory blood.

Young L. Kim, PhD, MSCI, an associate professor and senior author of the study said, “Our new mobile health approach paves the way for bedside or remote testing of blood hemoglobin levels for detecting anemia, acute kidney injury and hemorrhages, or for assessing blood disorders such as sickle cell anemia.” The study was published on May 21, 2020 issue of the journal Optica.

Related Links:
Purdue University
Moi University Teaching and Referral Hospital


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
One Step HbA1c Measuring System
GREENCARE A1c
Complement 3 (C3) Test
GPP-100 C3 Kit
New
Gold Member
Plasma Control
Plasma Control Level 1

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: MOF materials efficiently enrich cfDNA and cfRNA in blood through simple operational process (Photo courtesy of Science China Press)

Blood Circulating Nucleic Acid Enrichment Technique Enables Non-Invasive Liver Cancer Diagnosis

The ability to diagnose diseases early can significantly enhance the effectiveness of clinical treatments and improve survival rates. One promising approach for non-invasive early diagnosis is the use... Read more

Pathology

view channel
Image: The OvaCis Rapid Test discriminates benign from malignant epithelial ovarian cysts (Photo courtesy of INEX)

Intra-Operative POC Device Distinguishes Between Benign and Malignant Ovarian Cysts within 15 Minutes

Ovarian cysts represent a significant health issue for women globally, with up to 10% experiencing this condition at some point in their lives. These cysts form when fluid collects within a thin membrane... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.