We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Breath Analysis Identifies Cancer Patients Likely to Benefit from Immunotherapy

By LabMedica International staff writers
Posted on 22 Sep 2019
An “electronic nose” analytical device has been developed that can determine the likelihood of a cancer patient to respond successfully to immunotherapy.

Immune checkpoint inhibitors such as nivolumab and pembrolizumab have improved the survival outcome of advanced non-small-cell lung cancer (NSCLC) patients. More...
However, most patients do not benefit from this treatment. Therefore, biomarkers are needed that can accurately predict the patient’s response.

Investigators at the Radboud University Medical Centre (Nijmegen, The Netherlands) and their collaborators at other institutions hypothesized that molecular profiling of exhaled air may capture the inflammatory milieu related to the individual responsiveness to anti-programmed death ligand 1 (PD-1) therapy. The current study aimed to determine the accuracy of exhaled breath analysis for assessing nonresponders versus responders to anti-PD-1 therapy in NSCLC patients.

The electronic nose (eNose) device comprised a metal oxide semiconductor electronic sensor positioned at the rear end of a pneumotachograph. A pneumotachograph is a type of respirometer that is used to assess pulmonary function. This instrument can measure the mechanical function of lungs, chest wall, and respiratory muscles by recording volume, flow, and pressure changes during expiratory or inspiratory events. The eNose sytem used for this study was produced by the biotechnology company Breathomix (Reeuwijk, The Netherlands).

The purpose of the eNose was to detect volatile organic compounds (VOCs), which are present in about 1% of exhaled breath. The investigators speculated that the mix of VOCs in the breath of patients with advanced NSCLC might indicate whether or not the patient would respond to anti-PD1 therapy. The measurement took less than a minute, and the results were compared to an online database where machine-learning algorithms immediately identified whether or not the patient was likely to respond to anti-PD1 therapy.

For the study, the investigators worked with 143 patients with advanced NSCLC. The eNose device was used to establish the breath profiles of the patients two weeks before they began treatment with nivolumab or pembrolizumab. After three months the investigators used standard criteria (Response Evaluation Criteria of Solid Tumors, RECIST) to assess whether the patients were responding to the treatment nor not. Results from the first 92 patients (who started treatment between March 2016 and February 2017) were validated by the results from the remaining 51 patients (who started treatment after April 2017).

Results revealed that eNose analysis of the breath of lung cancer patients could identify with 85% accuracy those who would or would not respond to immunotherapeutic treatment. This finding could potentially prevent the application of ineffective treatment for patients identified as probable nonresponders.

Senior author Dr. Michel van den Heuvel, professor of thoracic oncology at the Radboud University Medical Centre, said, "The introduction of immunotherapy has dramatically improved the treatment of advanced stage non-small cell lung cancer but unfortunately it is only effective in a subset of patients, which was about 20% when we started the study. Currently, there is no test available that can accurately predict who will benefit from this treatment, apart from PD-L1 testing by immuno-histochemistry. This is today's biomarker of choice, despite its analytic and predictive limitations, when making clinical decisions about whether or not to treat a patient with immunotherapy."

"We are convinced that this study merely scratches the surface," said Dr. van den Heuvel. "It represents the first introduction of modern precision medicine, namely that molecular fingerprints can be easily obtained and quickly analyzed on the spot. This truly offers new possibilities for the individual patient and the doctor. The power of this eNose system is that it has been properly validated, both technically and clinically, which is essential. We believe that analysis of exhaled breath is going to become an important diagnostic tool and will guide future treatment in oncology as well as in many other diseases."

The study was published in the September 17, 2019, online edition of the journal Annals of Oncology.

Related Links:
Radboud University Medical Centre
Breathomix


Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
POC Helicobacter Pylori Test Kit
Hepy Urease Test
New
ESR Analyzer
TEST1 2.0
New
Rapid Molecular Testing Device
FlashDetect Flash10
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Immunology

view channel
Image: The test could streamline clinical decision-making by identifying ideal candidates for immunotherapy upfront (Xiao, Y. et al. Cancer Biology & Medicine July 2025, 20250038)

Blood Test Predicts Immunotherapy Efficacy in Triple-Negative Breast Cancer

Triple-negative breast cancer (TNBC) is an aggressive subtype lacking targeted therapies, making immunotherapy a promising yet unpredictable option. Current biomarkers such as PD-L1 expression or tumor... Read more

Microbiology

view channel
Image: New diagnostics could predict a woman’s risk of a common sexually transmitted infection (Photo courtesy of 123RF)

New Markers Could Predict Risk of Severe Chlamydia Infection

Chlamydia trachomatis is a common sexually transmitted infection that can cause pelvic inflammatory disease, infertility, and other reproductive complications when it spreads to the upper genital tract.... Read more

Technology

view channel
Image: The sensor can help diagnose diabetes and prediabetes on-site in a few minutes using just a breath sample (Photo courtesy of Larry Cheng/Penn State)

Graphene-Based Sensor Uses Breath Sample to Identify Diabetes and Prediabetes in Minutes

About 37 million U.S. adults live with diabetes, and one in five is unaware of their condition. Diagnosing diabetes often requires blood draws or lab visits, which are costly and inconvenient.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.