We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Cancer Detection Device Proves Effective in Field Testing

By LabMedica International staff writers
Posted on 01 Oct 2018
Print article
Image: A lunchbox-sized device for nucleic acid quantification that can be powered by sunlight, a flame or electricity enables the diagnosis of disease in settings with unreliable power supply (Photo courtesy of Cornell University).
Image: A lunchbox-sized device for nucleic acid quantification that can be powered by sunlight, a flame or electricity enables the diagnosis of disease in settings with unreliable power supply (Photo courtesy of Cornell University).
A decentralized approach to diagnostics can decrease the time to treatment of infectious diseases in resource-limited settings, yet most modern diagnostic tools require stable electricity and are not portable.

Kaposi sarcoma (KS) is a cancer that causes patches of abnormal tissue to grow under the skin, in the lining of the mouth, nose, and throat, in lymph nodes, or in other organs. These patches, or lesions, are usually red or purple. They are made of cancer cells, blood vessels, and blood cells.

Bioengineers at Cornell University (Ithaca, NY, USA) and their colleagues have developed a portable device for isothermal nucleic acid quantification that can operate with power from electricity, sunlight or a flame, and that can store heat from intermittent energy sources for operation when electrical power is not available or reliable. The device, the Tiny Isothermal Nucleic acid quantification sYstem (or TINY) has shown promise as a point-of-care detector of Kaposi sarcoma-associated herpesvirus (KSHV) in resource-limited settings such as sub-Saharan Africa.

The team collected biopsy samples from 71 patients in Uganda suspected of having KS and tested the samples with TINY as well as via quantitative polymerase chain reaction (qPCR), the current standard for nucleic acid quantification. Agreement between TINY and qPCR was 94% (67/71), and the team showed that all disagreement stemmed from assay limitations and not TINY capability. The four discordant samples having the lowest concentration of the herpesvirus DNA. Not only can TINY be carried to remote locations for point-of-care use, it could also be valuable in clinics and hospitals where electric power can be unreliable.

Ethel Cesarman, MD, a professor of pathology and laboratory medicine, and a senior author of the study, said, “As a pathologist who knows how difficult it can sometimes be to diagnose KS, it is very exciting to collaborate with engineers that invented a brilliant new device that makes it so easy to support or discard a diagnosis of KS in less than three hours from the time a biopsy is taken.” The study was published on September 11, 2018, in the journal Nature Biomedical Engineering.

Related Links:
Cornell University

New
Gold Member
Human Chorionic Gonadotropin Test
hCG Quantitative - R012
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Blood Gas and Chemistry Analysis System
Edan i500
New
Chagas Disease Test
LIAISON Chagas

Print article

Channels

Clinical Chemistry

view channel
Image: The GlycoLocate platform uses multi-omics and advanced computational biology algorithms to diagnose early-stage cancers (Photo courtesy of AOA Dx)

AI-Powered Blood Test Accurately Detects Ovarian Cancer

Ovarian cancer ranks as the fifth leading cause of cancer-related deaths in women, largely due to late-stage diagnoses. Although over 90% of women exhibit symptoms in Stage I, only 20% are diagnosed in... Read more

Molecular Diagnostics

view channel
Image: The advanced molecular test is designed to improve diagnosis of a genetic form of COPD (Photo courtesy of National Jewish Health)

Groundbreaking Molecular Diagnostic Test Accurately Diagnoses Major Genetic Cause of COPD

Chronic obstructive pulmonary disease (COPD) and Alpha-1 Antitrypsin Deficiency (AATD) are both conditions that can cause breathing difficulties, but they differ in their origins and inheritance.... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: The new algorithms can help predict which patients have undiagnosed cancer (Photo courtesy of Adobe Stock)

Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer

Two newly developed advanced predictive algorithms leverage a person’s health conditions and basic blood test results to accurately predict the likelihood of having an undiagnosed cancer, including ch... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.