We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Blood Sample Storage Evaluated for PEA Analysis

By LabMedica International staff writers
Posted on 29 May 2017
A team of Swedish researchers evaluated and optimized conditions for storing samples of dried blood for current and future proximity extension assay (PEA) analysis.

Dried blood samples are attractive for sample preservation due to the ease and low cost of collection and storage. More...
In a recent study, investigators at Uppsala University evaluated their suitability for protein measurements. The investigators analyzed 92 proteins with relevance for oncology using multiplex proximity extension assays (PEA) in dried blood spots collected on paper and stored for up to 30 years at either plus four degrees Celsius or minus 24 degrees Celsius.

According to the PEA method, a pair of oligonucleotide-labeled antibodies is allowed to pair-wise bind to the target protein present in the dried-blood sample in a homogeneous assay, with no need for washing. When the two probes are in close proximity, a new PCR target sequence is formed by a proximity-dependent DNA polymerization event. The resulting sequence is subsequently detected and quantified using standard real-time PCR. This method, which has been commercialized under the name Proseek Multiplex by Olink, allows detection of levels of 96 proteins (including four controls) from a disc 1.2 millimeters in diameter punched out of a dried blood spot (DBS) on filter paper.

The main findings of the study were that (1) the act of drying only slightly influenced detection of blood proteins in a reproducible manner, (2) detection of some proteins was not significantly affected by storage over the full range of three decades (34% and 76% of the analyzed proteins at plus four degrees Celsius and minus 24 degrees Celsius, respectively), while levels of others decreased slowly during storage with half-lives in the range of 10 to 50 years, and (3) detectability of proteins was less affected in dried samples stored at minus 24 degrees Celsius compared to at four degrees Celsius.

"This has several implications. First, you can prick your own finger and send in a dried blood spot by post. Second, at a minimal cost, it will be possible to build gigantic biobanks of samples obtained on a routine clinical basis. This means that samples can be taken before the clinical debut of a disease, to identify markers of value for early diagnosis, improving the scope for curative treatment," said senior author Dr. Ulf Landegren, professor of molecular medicine at Uppsala University.

The study was published in the May 13, 2017, online edition of the journal Molecular & Cellular Proteomics.


New
Gold Member
Hematology Analyzer
Medonic M32B
POC Helicobacter Pylori Test Kit
Hepy Urease Test
New
ESR Analyzer
TEST1 2.0
New
Gold Member
Hematology System
Medonic M16C
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Immunology

view channel
Image: The test could streamline clinical decision-making by identifying ideal candidates for immunotherapy upfront (Xiao, Y. et al. Cancer Biology & Medicine July 2025, 20250038)

Blood Test Predicts Immunotherapy Efficacy in Triple-Negative Breast Cancer

Triple-negative breast cancer (TNBC) is an aggressive subtype lacking targeted therapies, making immunotherapy a promising yet unpredictable option. Current biomarkers such as PD-L1 expression or tumor... Read more

Microbiology

view channel
Image: New diagnostics could predict a woman’s risk of a common sexually transmitted infection (Photo courtesy of 123RF)

New Markers Could Predict Risk of Severe Chlamydia Infection

Chlamydia trachomatis is a common sexually transmitted infection that can cause pelvic inflammatory disease, infertility, and other reproductive complications when it spreads to the upper genital tract.... Read more

Pathology

view channel
image: Researchers Marco Gustav (right) and MD Nic G. Reitsam (left) discuss the study data (Photo courtesy of Anja Stübner/EKFZ)

AI Model Simultaneously Detects Multiple Genetic Colorectal Cancer Markers in Tissue Samples

Colorectal cancer is a complex disease influenced by multiple genetic alterations. Traditionally, studies and diagnostic tools have focused on predicting only one mutation at a time, overlooking the interplay... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.