Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Method Developed to Speed Up Detection of Infectious Diseases

By LabMedica International staff writers
Posted on 22 Sep 2016
A method to speed and simplify the detection of proteins in blood and plasma has been described opening up the potential for diagnosing the early presence of infectious diseases or cancer during a doctor’s office visit.

The new approach overcame several key challenges in detecting proteins that are biomarkers of disease. More...
First, these proteins are often at low abundance in body fluids and accurately identifying them requires amplification processes. The new test takes about 10 minutes as opposed to two to four hours for current state-of-the-art tests.

Scientists at the University of California, Los Angeles (CA, USA) devised an approach to amplify a protein signal without any enzymes, thus eliminating the need for a complex system to wash away excess enzymes, and that would work only in the presence of the target protein. This novel approach made use of a molecular chain reaction that was strongly triggered only in the presence of a target protein.

The team designed a transduction mechanism whereby a protein signal is transduced into an amplified nucleic acid output using DNA nanotechnology. In this system, a protein is recognized by nucleic acid bound recognition elements to form a catalytic complex that drives a hybridization/displacement reaction on a multicomponent nucleic acid substrate, releasing multiple target single-stranded oligonucleotides in an amplified fashion. The team demonstrated the approach with two target proteins, streptavidin, widely used as a test protein for new diagnostic assays, and influenza nucleoprotein, which is a protein associated with the influenza virus.

In the long term the team aims to combine the technique with portable readers that could be particularly beneficial in clinics in resource-poor areas. The scientists demonstrated a synergistic handheld microplate reader suitable for protein diagnostic assays based on a cellphone’s optical and computational systems earlier this year. In addition, they demonstrated the assay in a microfluidic digital assay format leading to improved quantification and sensitivity approaching single-molecule levels. The present scheme they believe will have a significant impact on a range of applications from fundamental molecular interaction studies to design of artificial circuits in vivo to high-throughput, multiplexed assays for screening or point-of-care diagnostics.

Omai B. Garner, PhD, an Assistant Clinical Professor and Associate Director of Clinical Microbiology and co-author of the study, said, “Although demonstrated initially in detecting protein associated with flu, we envision the approach can be generalized to a range of protein biomarkers associated with infectious diseases and cancer.” He noted it could be configured to detect diseases such as Zika or Ebola. The study was published on July 27, 2016, in the journal ACS Nano.

Related Links:
University of California, Los Angeles


Gold Member
Hematology Analyzer
Medonic M32B
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Human Estradiol Assay
Human Estradiol CLIA Kit
Alcohol Testing Device
Dräger Alcotest 7000
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.