Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Method Preserves Microfluidic Devices for HIV Monitoring in Developing Countries

By LabMedica International staff writers
Posted on 03 May 2016
Microfluidic devices with immunochemistry have broad applications in chemotherapy monitoring, transplant patient monitoring, and especially in monitoring the efficacy of antiretroviral therapy.

Providing vital health care services to people in developing countries without reliable electricity, refrigeration and state-of-the-art medical equipment poses a number of challenges. More...
A novel method has been developed to store microfluidic devices for CD4 T cell testing in extreme weather conditions for up to six months without refrigeration.

Bioengineers at Stanford University School of Medicine (Palo Alto, CA, USA) and their colleagues employed a lensless imaging method to rapidly count CD4 T cells using complementary metal-oxide semiconductor (CMOS) sensor, the same imaging sensor found in cell phone cameras. Lensless imaging technology allows rapid cell counting and does not require skilled technicians to operate, making it suitable for point-of-care settings. If produced at a large scale, the microfluidic device would cost less than USD 1 compared with the current cost of a CD4 assay, which is about USD 30–50.

The investigators used trehalose, a form of sugar that is present in some plants and animals, to preserve the microfluidic device. Since trehalose has the capability to enable plants to thrive in very harsh hot and cold conditions, they determined that it could have the same effect on multilayer surfaces like a microfluidic device. They packaged and vacuum-sealed the trehalose treated device in plastic and used a drying agent to address the effects of humidity. They exposed the device to extreme weather conditions in a laboratory environment to test its functionality and shelf life.

The results of the study revealed that they were able to preserve the microfluidic devices over a period of six months using this method. At room temperature, they observed 90% specificity for up to six months. The engineers also integrated these stabilized microfluidic devices post-reactivation with the CMOS lensless imaging technology. The captured CD4 T cells were counted rapidly and automatically from unprocessed whole blood, creating a portable, battery-operated, inexpensive, and microscope-free CD4 T cell counting platform with a long shelf life.

Waseem Asghar, PhD, an assistant professor of electrical engineering and co-first author of the study, said, “Monitoring HIV patients at point-of-care settings in resource-constrained countries like Africa are critical in knowing how their treatment is progressing and whether or not a particular drug is working the way it should.” The study was originally published online on February 17, 2016, in the journal Scientific Reports.

Related Links:
Stanford University School of Medicine


Gold Member
Fibrinolysis Assay
HemosIL Fibrinolysis Assay Panel
POC Helicobacter Pylori Test Kit
Hepy Urease Test
New
Gold Member
Clinical Drug Testing Panel
DOA Urine MultiPlex
Laboratory Software
ArtelWare
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.