We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Diagnostic Method Created Based On Birefringence

By LabMedica International staff writers
Posted on 20 Dec 2015
Print article
Image: The birefringence pattern of a sample positive to Ebolavirus infection (Photo courtesy of Jijo Vallooran /ETH Zurich).
Image: The birefringence pattern of a sample positive to Ebolavirus infection (Photo courtesy of Jijo Vallooran /ETH Zurich).
A new diagnostic method has been created based on birefringence, which is the ability of substances to change the polarization state of light. With this method, doctors around the world could easily, rapidly, and reliably detect pathogenic microorganisms.

Although the concept behind this new technology is very general and appears so easy to operate, the scientific basis underlying the invention is extremely complex. The phenomenon of birefringence of polarized light from the lipid based lyotropic liquid crystals, which consist of self-assembled structures of fat molecules in water.

Scientists at the Swiss Federal Institute of Technology (ETH; Zurich; Switzerland) used lipidic cubic phases that are optically isotropic, transparent lyotropic liquid crystals (LC), containing highly confined water nanochannels in-between percolating lipid bilayers following defined space groups. Due to this nano-confinement, the water in these systems provides a unique environment for chemical and enzymatic reactions.

During the mesoperoxidase enzymatic reaction, the converted product crystallizes within the mesophase domains, generating a detectable birefringence signal and a new general assay principle is presented for the detection of an unprecedented vast class of analytes using such birefringence as sole optical output signal. The team used polarized light microscopy and a small amount of the cubic phase was analyzed under cross-polarized light using an Axioskop 2 MOT microscope (Zeiss; Oberkochen, Germany) at 37 °C. The polarization device costs CHF 20, which considerably less expensive when compared with other detection methods.

By exploiting bienzymatic cascade reactions or introducing an enzyme-linked immunosorbent assay based on birefringence (Birefringent-ELISA), this approach was used for real-time detection of exemplary analytes, such as glucose and cholesterol, model pathogenic microorganisms, Escherichia coli, and viruses such as Ebola and human immunodeficiency virus (HIV). The team also showed how the same technology enables the rapid, naked-eye screening of malaria infection via in meso detection of hemozoin crystallites. Pathogens can be detected very rapidly, and a reliable result received within less than an hour.

Raffaele Mezzenga, PhD, a professor and lead author of the study said, “The Plasmodium parasite invades erythrocytes and digests hemoglobin. The heme component, which is toxic to the parasites, is crystallized and thus has inherently birefringent surfaces. So it's not necessary to mark it with antibodies and no enzymatic reaction is required.” The study was published in the November 2015 issue of the journal Advanced Functional Materials.

Related Links:

Swiss Federal Institute of Technology 
Zeiss 


Gold Member
Troponin T QC
Troponin T Quality Control
Verification Panels for Assay Development & QC
Seroconversion Panels
New
C-Reactive Protein Assay
OneStep C-Reactive Protein (CRP) RapiCard InstaTest
New
Total Thyroxine Assay
Total Thyroxine CLIA Kit

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Pathology

view channel
Image: The ready-to-use DUB enzyme assay kits accelerate routine DUB activity assays without compromising data quality (Photo courtesy of Adobe Stock)

Sensitive and Specific DUB Enzyme Assay Kits Require Minimal Setup Without Substrate Preparation

Ubiquitination and deubiquitination are two important physiological processes in the ubiquitin-proteasome system, responsible for protein degradation in cells. Deubiquitinating (DUB) enzymes contain around... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.