We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Diagnostic Antibodies and Proteins Detected with DNA Nanomachines

By LabMedica International staff writers
Posted on 27 Oct 2015
A nanoscale machine composed of synthetic DNA can be used for the rapid, sensitive and low-cost diagnosis of many infectious and autoimmune diseases, including human immunodeficiency virus (HIV) and rheumatoid arthritis (RA). More...


A versatile platform for the one-step fluorescence detection of both monovalent and multivalent proteins has been developed and is based on a conformation-switching stem-loop DNA scaffold that presents a small-molecule, polypeptide, or nucleic-acid recognition element on each of its two stem strands.

Scientists at the University of Rome Tor Vergata (Italy) working with their North American colleagues designed and synthetized a nanometer-scale DNA "machine" whose customized modifications enable it to recognize a specific target antibody. Their new approach promises to support the development of rapid, low-cost antibody detection at the point-of-care, eliminating the treatment initiation delays and increasing healthcare costs associated with current techniques. The protein-targeting sensor is composed of a fluorophore/quencher-modified DNA stem–loop system containing two single-stranded tails. To create a target-responsive sensor, these tails are hybridized with DNAs conjugated to an appropriate recognition element.

The binding of the antibody to the DNA machine causes a structural change or switch, which generates a light signal. The sensor does not need to be chemically activated and is rapid, acting within five minutes, enabling the targeted antibodies to be easily detected, even in complex clinical samples such as blood serum. The versatility of the platform was demonstrated by detecting five bivalent proteins (four antibodies and the chemokine platelet-derived growth factor) and two monovalent proteins (a Fab fragment and the transcription factor TATA Box Binding Protein (TBP) with low nanomolar detection limits and no detectable cross-reactivity.

Francesco Ricci, PhD, a professor and senior coauthor of the study, said, “One of the advantages of our approach is that it is highly versatile. This DNA nanomachine can be in fact custom-modified so that it can detect a huge range of antibodies; this makes our platform adaptable for many different diseases.” The materials needed for one assay cost about USD 0.15, making the approach very competitive in comparison with other quantitative approaches. The study was published on September 4, 2015, in the journal Angewandte Chemie.

Related Links:

University of Rome Tor Vergata



New
Gold Member
Serological Pipets
INTEGRA Serological Pipets
POC Helicobacter Pylori Test Kit
Hepy Urease Test
New
Silver Member
Rapid Test Reader
DIA5000
New
Alcohol Testing Device
Dräger Alcotest 7000
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: Platelets sequester cfDNA during circulation (Murphy L. et al., Science, 2025; DOI: 10.1126/science.adp3971)

Platelets Could Improve Early and Minimally Invasive Detection of Cancer

Platelets are widely recognized for their role in blood clotting and scab formation, but they also play a crucial role in immune defense by detecting pathogens and recruiting immune cells.... Read more

Immunology

view channel
Image: The test could streamline clinical decision-making by identifying ideal candidates for immunotherapy upfront (Xiao, Y. et al. Cancer Biology & Medicine July 2025, 20250038)

Blood Test Predicts Immunotherapy Efficacy in Triple-Negative Breast Cancer

Triple-negative breast cancer (TNBC) is an aggressive subtype lacking targeted therapies, making immunotherapy a promising yet unpredictable option. Current biomarkers such as PD-L1 expression or tumor... Read more

Microbiology

view channel
Image: New diagnostics could predict a woman’s risk of a common sexually transmitted infection (Photo courtesy of 123RF)

New Markers Could Predict Risk of Severe Chlamydia Infection

Chlamydia trachomatis is a common sexually transmitted infection that can cause pelvic inflammatory disease, infertility, and other reproductive complications when it spreads to the upper genital tract.... Read more

Pathology

view channel
image: Researchers Marco Gustav (right) and MD Nic G. Reitsam (left) discuss the study data (Photo courtesy of Anja Stübner/EKFZ)

AI Model Simultaneously Detects Multiple Genetic Colorectal Cancer Markers in Tissue Samples

Colorectal cancer is a complex disease influenced by multiple genetic alterations. Traditionally, studies and diagnostic tools have focused on predicting only one mutation at a time, overlooking the interplay... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.