Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




On-Chip Optical Sensing Technique Detects Multiple Flu Strains

By LabMedica International staff writers
Posted on 18 Oct 2015
The ability to simultaneously detect and identify multiple biomarkers is one of the key requirements for molecular diagnostic tests that are becoming even more important as personalized and precision medicine place increased emphasis on such capabilities.

Integrated optofluidic platforms can help create such highly sensitive, multiplexed assays on a small, dedicated chip and a method for multiplex fluorescence detection of single bioparticles by creating color-dependent excitation spot patterns from a single integrated waveguide structure has been developed. More...


Biophysicists at the University of California, Santa Cruz (CA, USA) have described a novel method to perform diagnostic assays for multiple strains of influenza virus on a small, dedicated chip. They demonstrated a novel application of a principle called wavelength division multiplexing, which is widely used in fiber-optic communications. By superimposing multiple wavelengths of light in an optical waveguide on a chip, they were able to create wavelength-dependent spot patterns in an intersecting fluidic channel. Virus particles labeled with fluorescent markers give distinctive signals as they pass through the fluidic channel depending on which wavelength of light the markers absorb.

The team tested the device using three different influenza subtypes labeled with different fluorescent markers. Initially, each strain of the virus was labeled with a single dye color, and three wavelengths of light were used to detect them in a mixed sample. In a second test, one strain was labeled with a combination of the colors used to label the other two strains. Again, the detector could distinguish among the viruses based on the distinctive signals from each combination of markers. This combinatorial approach is important because it increases the number of different targets that can be detected with a given number of wavelengths of light. For these tests, each viral subtype was separately labeled with fluorescent dye. For an actual diagnostic assay, fluorescently labeled antibodies could be used to selectively attach distinctive fluorescent markers to different strains of the influenza virus.

Holger Schmidt, PhD, a professor of Optoelectronics and lead author of the study, said, “A standard flu test checks for about ten different flu strains, so it's important to have an assay that can look at 10 to 15 things at once. We showed a completely new way to do that on an optofluidic chip. Each color of light produces a different spot pattern in the channel, so if the virus particle is labeled to respond to blue light, for example, it will light up nine times as it goes through the channel, if it's labeled for red it lights up seven times, and so on.” The study was published on October 6, 2015, in the journal Proceedings of the National Academy of Sciences of the United States of America (PNAS).

Related Links:

University of California, Santa Cruz 



Gold Member
Blood Gas Analyzer
Stat Profile pHOx
Collection and Transport System
PurSafe Plus®
New
6 Part Hematology Analyzer with RET + IPF
Mispa HX 88
New
Anterior Nasal Specimen Collection Swabs
53-1195-TFS, 53-0100-TFS, 53-0101-TFS, 53-4582-TFS
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Pathology

view channel
Image: Erythrocyte Sedimentation Rate Sample Stability (Photo courtesy of ALCOR Scientific)

ESR Testing Breakthrough Extends Blood Sample Stability from 4 to 28 Hours

Erythrocyte sedimentation rate (ESR) is one of the most widely ordered blood tests worldwide, helping clinicians detect and monitor infections, autoimmune conditions, cancers, and other diseases.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.