We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




Medical Device Concept Reduces Time to Diagnose Infections

By LabMedica International staff writers
Posted on 16 Sep 2015
When a patient arrives at a hospital with a serious infection, doctors have precious few minutes to make an accurate diagnosis and prescribe treatment accordingly; however a new diagnostic device may significantly reduce the amount of time necessary to diagnose tissue infections.

Pathogens and infectious diseases in state-of-the-art laboratories are typically detected using a technique called polymerase chain reaction, or PCR and this method involves rapidly heating and cooling DNA molecules from a biological sample in a process called thermal cycling and most PCR tests can take up to an hour or more, and a physician's decision-making window is typically less than ten minutes.

Bioengineers at the University of Arizona (Tucson, AZ, USA) have developed a method called droplet-on-thermocouple silhouette real-time PCR (DOTS qPCR). More...
The technology relies on the measurement of subtle surface tension changes at the interface of a water droplet suspended in an oil medium. The water droplet, which contains the target DNA to be amplified, is moved along a heat gradient in the oil to begin the chain reaction. As more copies of the target DNA are produced, they move towards the oil-water interface, resulting in measurable changes in surface tension. Remarkably, the size of the droplet can be measured using a smartphone camera, providing a method to observe the course of the reaction in real time.

In infective endocarditis diagnosis, DOTS qPCR demonstrates reproducibility, differentiation of antibiotic susceptibility, sub-picogram limit of detection, and thermocycling speeds of up to 28 s/cycle in the presence of tissue contaminants. The DOTS qPCR has sample-to-answer times as short as three and a half minutes. A log-linear relationship with low threshold cycles was presented for real-time quantification by imaging the droplet-on-thermocouple silhouette with a smartphone. DOTS qPCR resolves several limitations of commercially available real-time PCR systems, which rely on fluorescence detection, have substantially higher threshold cycles, and require expensive optical components and extensive sample preparation.

Jeong-Yeol Yoon, PhD, a professor and senior author of the study, said, “With DOTS qPCR we are able to detect amplification and identify the infection after as few as four thermal cycles, while other methods are working with between 18 and 30. The system still works with relatively dirty samples. We can use very minimal processing and still make the detection in a short time. It's easy to use, smartphone-integrated and saves money and labor using expensive equipment. This technology has a lot of commercial potential, and we'd be happy to work with industry to bring it to market.” The study was published on September 4, 2015, in the journal Science Advances.

Related Links:

University of Arizona



Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Ultrasonic Cleaner
UC 300 Series
New
C-Reactive Protein Assay
OneStep C-Reactive Protein (CRP) RapiCard InstaTest
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The GlycoLocate platform uses multi-omics and advanced computational biology algorithms to diagnose early-stage cancers (Photo courtesy of AOA Dx)

AI-Powered Blood Test Accurately Detects Ovarian Cancer

Ovarian cancer ranks as the fifth leading cause of cancer-related deaths in women, largely due to late-stage diagnoses. Although over 90% of women exhibit symptoms in Stage I, only 20% are diagnosed in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Pathology

view channel
Image: Schematic diagram of multimodal single-cell MSI using tapping-mode scanning probe electrospray ionization (Photo courtesy of Yoichi Otsuka)

New Technology Improves Understanding of Complex Biological Samples

Tissues are composed of a complex mixture of various cell types, which complicates our understanding of their biological roles and the study of diseases. Now, a multi-institutional team of researchers... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.