We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




Mobile Phone Microscope Aids Malaria Diagnosis

By LabMedica International staff writers
Posted on 16 Sep 2015
A 3-D printed polarized microscope that can be attached to a mobile phone could help faster malaria detection in areas with limited access to expensive lab facilities and expert technicians. More...


Developed by researchers at Texas A&M University (TAMU; College Station, TX, USA), the low-cost, lightweight, high quality mobile-optical-polarization imaging device (MOPID) offers 40–100x magnification, sufficient to image pigmentation of the hemozoin crystal, a waste product produced by ‎Plasmodium falciparum, the parasite that causes malaria. To perform the test, a glass slide with a blood smear is inserted into the device; the cell phone camera then takes a picture, and the photo shows the presence (or absence) of malaria.

The MOPID system consists of a commercial Apple iPhone 5S cellular phone, a snap on 3D-printed cartridge with individual compartments that allowed for polarized microscopy, two polarizer sheets, low-power white light emitting diodes (LEDs), and a plastic lens assembly configuration allowing for appropriate magnification, resolution, and field of view (FOV) for diagnosing the presence of the malaria parasite. The analyzer can be rotated to vary the degree of polarization, thus allowing for birefringence measurements from the hemozoin crystal.

The researchers are moving forward to construct a more durable, compact, and cheaper device for in vivo field-testing in Rwanda. They envision that the final product could be available for less than USD 1.00 per test result, not including the cost of the mobile phone attached to the MOPID device. A study describing the system and comparing performance to a Leica Microsystems (Wetzlar, Germany) DMLM polarized white light microscope was published on August 25, 2015, in Nature Scientific Reports.

“Because of the lack of access to lab testing, many health-care providers rely on rapid diagnostic tests, which are the equivalent of a pregnancy test for parasites. They are not always reliable and can lead to misdiagnosis and overtreatment. Giving medicine to those who don’t need it is causing drug-resistant strains of malaria to develop,” said lead author biomedical engineer Casey Pirnstill, BSc. “The device could be used by a nurse or other health outreach workers. The original photos would be saved in case further interpretation by a doctor is required.”

There are more than 200 million new malaria cases yearly, and high-quality microscopy is still the most accurate method for detection of infection. Microscopy, however, requires well-trained personnel and can be very time-consuming. As a result, less than half of the suspected malaria cases in Sub-Saharan Africa in 2012 received a diagnostic test.

Related Links:

Texas A&M University
Leica Microsystems



Gold Member
Veterinary Hematology Analyzer
Exigo H400
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Ultra-Low Temperature Freezer
iUF118-GX
New
Cytomegalovirus Real-Time PCR Test
Quanty CMV Virus System
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The GlycoLocate platform uses multi-omics and advanced computational biology algorithms to diagnose early-stage cancers (Photo courtesy of AOA Dx)

AI-Powered Blood Test Accurately Detects Ovarian Cancer

Ovarian cancer ranks as the fifth leading cause of cancer-related deaths in women, largely due to late-stage diagnoses. Although over 90% of women exhibit symptoms in Stage I, only 20% are diagnosed in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Pathology

view channel
Image: Schematic diagram of multimodal single-cell MSI using tapping-mode scanning probe electrospray ionization (Photo courtesy of Yoichi Otsuka)

New Technology Improves Understanding of Complex Biological Samples

Tissues are composed of a complex mixture of various cell types, which complicates our understanding of their biological roles and the study of diseases. Now, a multi-institutional team of researchers... Read more

Technology

view channel
Image: The new algorithms can help predict which patients have undiagnosed cancer (Photo courtesy of Adobe Stock)

Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer

Two newly developed advanced predictive algorithms leverage a person’s health conditions and basic blood test results to accurately predict the likelihood of having an undiagnosed cancer, including ch... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.