Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Microfluidic Device Rapidly Detects Urinary Tract Infections

By LabMedica International staff writers
Posted on 23 Aug 2015
A polymeric centrifugal microfluidic platform has been developed for the rapid and sensitive identification of bacteria directly from urine, thus eliminating time-consuming cultivation steps.

Untreated urinary tract infections can quickly move to a life-threatening condition and cases may trigger sepsis, which occurs when the immune system, in an attempt to fight off the infection, inadvertently activates body-wide inflammation that can cause blood clots and leaky blood vessels.

Scientists at the Jena University Hospital (Germany) have created a Lab-on-a-Disc platform that combines microfluidics and Raman microscopy, a modern optical detection method. More...
The platform utilizes the rotationally induced centrifugal field to efficiently capture bacteria directly from suspension within a glass-polymer hybrid chip. Once trapped in an array of small V-shaped structures, the bacteria are readily available for spectroscopic characterization, such as Raman spectroscopic fingerprinting, providing valuable information on the characteristics of the captured bacteria.

Anonymized urine samples were provided by the hospital’s Institute of Medical Microbiology. They originated from different patients with single pathogen urinary tract infections (UTIs) of Enterococcus faecalis and Escherichia coli. To remove bigger particles such as leukocytes or epithelial cells, the urine samples were run through membrane filters, centrifuged, the pellet washed twice with phosphate buffered saline (PBS), and is finally re-suspended in PBS before being loaded into the device. A CRM 300 micro-Raman setup (WITec, Ulm, Germany), equipped with a 600 lines/mm grating was used for micro-Raman measurements.

The whole procedure, including sample preparation, requires about one hour to obtain a valuable result, marking a significant reduction in diagnosis time when compared to the 24 hours and more, typically required for standard microbiological methods. Characterization of the captured bacteria by label-free conventional micro-Raman spectroscopy allows rapid identification of the pathogens with their characteristic features, which is valuable for first screening analysis. The device has been easily adapted for fluorescence measurements, paving the way for the development of microfluidics-based immunochemical assays, illustrating a high potential of the device for numerous applications in spectroscopy-based point-of-care diagnostics.

Ulrich-Christian Schröder, a doctoral student and lead author of the study said, “Our device works by loading a few microliters of a patient's urine sample into a tiny chip, which is then rotated with a high angular velocity so that any bacteria is guided by centrifugal force through microfluidic channels to a small chamber where 'V-cup capture units' collect it for optical investigation. We were able to identify Escherichia coli and Enterococcus faecalis within 70 minutes, directly from patients' urine samples.” The study was published on August 11, 2015, in the journal Biomicrofluidics.

Related Links:

Jena University Hospital
WITec 



New
Gold Member
Immunochromatographic Assay
CRYPTO Cassette
POC Helicobacter Pylori Test Kit
Hepy Urease Test
New
Urine Chemistry Control
Dropper Urine Chemistry Control
New
6 Part Hematology Analyzer with RET + IPF
Mispa HX 88
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: Platelets sequester cfDNA during circulation (Murphy L. et al., Science, 2025; DOI: 10.1126/science.adp3971)

Platelets Could Improve Early and Minimally Invasive Detection of Cancer

Platelets are widely recognized for their role in blood clotting and scab formation, but they also play a crucial role in immune defense by detecting pathogens and recruiting immune cells.... Read more

Immunology

view channel
Image: The test could streamline clinical decision-making by identifying ideal candidates for immunotherapy upfront (Xiao, Y. et al. Cancer Biology & Medicine July 2025, 20250038)

Blood Test Predicts Immunotherapy Efficacy in Triple-Negative Breast Cancer

Triple-negative breast cancer (TNBC) is an aggressive subtype lacking targeted therapies, making immunotherapy a promising yet unpredictable option. Current biomarkers such as PD-L1 expression or tumor... Read more

Microbiology

view channel
Image: New diagnostics could predict a woman’s risk of a common sexually transmitted infection (Photo courtesy of 123RF)

New Markers Could Predict Risk of Severe Chlamydia Infection

Chlamydia trachomatis is a common sexually transmitted infection that can cause pelvic inflammatory disease, infertility, and other reproductive complications when it spreads to the upper genital tract.... Read more

Pathology

view channel
image: Researchers Marco Gustav (right) and MD Nic G. Reitsam (left) discuss the study data (Photo courtesy of Anja Stübner/EKFZ)

AI Model Simultaneously Detects Multiple Genetic Colorectal Cancer Markers in Tissue Samples

Colorectal cancer is a complex disease influenced by multiple genetic alterations. Traditionally, studies and diagnostic tools have focused on predicting only one mutation at a time, overlooking the interplay... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.