We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Turbocharged Thermal Cycling Leads to Ultrafast DNA Diagnostics

By LabMedica International staff writers
Posted on 12 Aug 2015
Nucleic acid amplification and quantification via polymerase chain reaction (PCR) is one of the most sensitive and powerful tools for clinical laboratories, precision medicine, personalized medicine, and other scientific fields.

Ultrafast multiplex PCR, characterized by low power consumption, compact size and simple operation, is ideal for timely diagnosis at the point-of-care (POC), but the use of a simple and robust PCR thermal cycler remains challenging for POC testing.

Bioengineers at the University of California (Berkeley, CA, USA) have developed a novel ultrafast photonic PCR method that combines the use of a thin gold (Au) film as a light-to-heat converter and light-emitting diodes (LEDs) as a heat source. More...
The ultrafast photonic PCR method uses plasmonic photothermal light-to-heat conversion via photon-electron-phonon coupling.

The scientists used thin films of gold that were 120 nm thick. The gold was deposited onto a plastic chip with microfluidic wells to hold the PCR mixture with the DNA sample. The light source was an array of off-the-shelf LEDs positioned beneath the PCR wells. The peak wavelength of the blue LED light was 450 nm, tuned to get the most efficient light-to-heat conversion. They were able to cycle from 55 °C to 95 °C 30 times in less than five minutes. They tested the ability of the photonic PCR system to amplify a sample of DNA, and found that the results compared well with conventional PCR tests.

Luke P. Lee, PhD, a professor of bioengineering, and senior author of the study said, “This photonic PCR system is fast, sensitive and low-cost. It can be integrated into an ultrafast genomic diagnostic chip, which we are developing for practical use in the field. Because this technology yields point-of-care results, we can use this in a wide range of settings, from rural Africa to a hospital emergency room.” The study was published on July 31, 2015, in the journal Light: Science & Application.

Related Links:

University of California 



New
Gold Member
Hybrid Pipette
SWITCH
Collection and Transport System
PurSafe Plus®
Gold Member
Automatic Hematology Analyzer
DH-800 Series
Gold Member
Immunochromatographic Assay
CRYPTO Cassette
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: A schematic illustrating the coagulation cascade in vitro (Photo courtesy of Harris, N., 2024)

ADLM’s New Coagulation Testing Guidance to Improve Care for Patients on Blood Thinners

Direct oral anticoagulants (DOACs) are one of the most common types of blood thinners. Patients take them to prevent a host of complications that could arise from blood clotting, including stroke, deep... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.