We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




BEAMing Technology Effectively Detects Cancer-Linked Mutations in Liquid Biopsy Samples

By LabMedica International staff writers
Posted on 19 Jul 2015
Liquid biopsy using BEAMing technology was found to be an effective method for analyzing tumor genotypes in real time and identifying significant mutations that occur during the course of disease and are not detected by tissue biopsy.

Rapid developments in the technology and protocols required for reliably isolating and analyzing circulating tumor DNA (ctDNA) in peripheral blood are making it easier to obtain the necessary samples without the need for physical biopsies. More...
One such method, developed by Sysmex-Inostics (Kobe, Japan), utilizes digital PCR to detect somatic tumor mutations in ctDNA with high sensitivity. The technique combines emulsion digital PCR and flow cytometry. Known as BEAMing, it employs a combination of beads, emulsification, amplification, and magnetics to achieve the necessary level of sensitivity.

The BEAMing process starts with isolating and purifying the DNA present in blood plasma, which then goes through a pre-amplification step using conventional PCR to amplify the genetic section of interest using primers incorporating known tag sequences. These DNA templates are then amplified again via emulsion PCR, employing primers directed at these sequence tags and covalently bound to magnetic microbeads via streptavidin–biotin interactions. By designing the system this way, the PCR products generated in each emulsion droplet will remain physically affixed to the microbeads at the end of the reaction, allowing them to be easily separated and purified using a magnet. The method also provides a digital readout of copy number, as it has been experimentally optimized to ensure that each emulsion droplet will contain a maximum of one microbead and one DNA template molecule. This makes it possible to detect even very rare mutant templates at copy ratios greater than 1:10,000.

BEAMing technology was used to analyze the DNA in 503 blood samples acquired from patients with metastatic colorectal cancer participating in the CORRECT (previously treated metastatic colorectal cancer) phase III trial.

Results revealed that tumor-associated mutations could readily be detected by BEAMing of plasma DNA, with KRAS mutations identified in 69% of patients, PIK3CA mutations in 17% of patients, and BRAF mutations in 3% of patients. The results also showed that the drug regorafenib seemed to be consistently associated with a clinical benefit in a range of patient subgroups based on mutational status and protein biomarker concentrations.

Regorafenib (commercial name Stivarga) is an oral multi-kinase inhibitor, which targets angiogenic, stromal, and oncogenic receptor tyrosine kinase (RTK). Regorafenib shows antiangiogenic activity due to its dual targeted VEGFR2-TIE2 (vascular endothelial growth factor receptor 2 - tyrosine kinase with immunoglobulin-like and EGF-like domains 2) tyrosine kinase inhibition. Regorafenib has been shown to increase the overall survival of patients with metastatic colorectal cancer and is currently being studied as a potential treatment option in multiple tumor types.

"This is the first large clinical trial to compare liquid versus conventional tissue biopsy data, and the results show the former (BEAMing technology) obtain more data on tumor mutation throughout the course of the disease, enabling us to better target therapy to the specificities of patient's tumor; this could have a considerable impact on clinical practice, as novel applications of this technology could be further investigated and developed," said first author Dr. Josep Tabernero, head of the medical oncology department at the Vall d'Hebron Institute of Oncology (Barcelona, Spain).

The CORRECT BEAMing study was published in the July 13, 2015, online edition of the journal the Lancet Oncology.

Related Links:

Sysmex-Inostics
Vall d'Hebron Institute of Oncology



Gold Member
Troponin T QC
Troponin T Quality Control
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Unstirred Waterbath
HumAqua 5
New
Pipet Controller
Stripettor Pro
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The GlycoLocate platform uses multi-omics and advanced computational biology algorithms to diagnose early-stage cancers (Photo courtesy of AOA Dx)

AI-Powered Blood Test Accurately Detects Ovarian Cancer

Ovarian cancer ranks as the fifth leading cause of cancer-related deaths in women, largely due to late-stage diagnoses. Although over 90% of women exhibit symptoms in Stage I, only 20% are diagnosed in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: The new algorithms can help predict which patients have undiagnosed cancer (Photo courtesy of Adobe Stock)

Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer

Two newly developed advanced predictive algorithms leverage a person’s health conditions and basic blood test results to accurately predict the likelihood of having an undiagnosed cancer, including ch... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.