We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Automatic Cytometer Tallies Tumor Cells in Blood

By LabMedica International staff writers
Posted on 19 May 2015
Flow cytometry has been used to count cancer cells for many years, but the large instruments are expensive and can only be operated by trained personnel.

Existing flow cytometers are capable of measuring the quantity of tumor cells circulating in the bloodstream but they often cost up to EUR 300,000 and can take up a huge amount of space, equivalent to two washing machines. More...


Scientists at the Fraunhofer Institute for Chemical Technology (Munich, Germany) have developed the PoCyton cytometer which is cheap to produce, no bigger than a shoebox, and automated. All the PoCyton flow cytometer needs is a sample of the patient's blood, and within a short time the attending physician will know how many tumor cells are circulating in the blood. Cancerous growths release cells into the bloodstream, and their number provides an indication of how effective the therapy has been. If the number of cancerous cells decreases in the course of treatment, it shows that it has been effective.

Flow cytometry works on the following principle: A fluorescent dye is injected into the blood, and the dye molecules bind to the tumor cells, leaving all other cells unmarked. Whereas until now the physician had to add the dye to the blood sample manually, this now takes place automatically in the PoCyton process. The blood is funneled through a narrow focal area, causing all suspended cells to pass one by one in front of a laser spot detector. The light causes the cells to which the dye has attached itself, the tumor cells, to fluoresce, enabling the device to detect and count them. This narrow passage is the key to the PoCyton process.

Michael Bassler, PhD, a senior scientist who helped develop the cytometer, said, “We designed it in such a way that the throughput is 20 times greater than in conventional cytometry. At the same time, its geometry was chosen to ensure that no cells pass in front of one another. In this way the scientists can be sure that the system registers every single object flowing past the detector, and that no cell is hidden behind another. Such errors could have dramatic consequences, because a mere 10 mL sample of blood contains around one billion suspended objects. Of these, only five are circulating tumor cells, even in a severely sick patient.”

Related Links:

Fraunhofer Institute for Chemical Technology



Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Collection and Transport System
PurSafe Plus®
New
Rapid Molecular Testing Device
FlashDetect Flash10
New
Urine Chemistry Control
Dropper Urine Chemistry Control
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: Left is the original cell image and right is same cell image zoomed in and rendered in the special imaging software (Photo courtesy of FIU)

Brain Inflammation Biomarker Detects Alzheimer’s Years Before Symptoms Appear

Alzheimer’s disease affects millions globally, but patients are often diagnosed only after memory loss and other symptoms appear, when brain damage is already extensive. Detecting the disease much earlier... Read more

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Immunology

view channel
Image: The VENTANA HER2 (4B5) test is now CE-IVDR approved (Photo courtesy of Roche)

Companion Diagnostic Test Identifies HER2-Ultralow Breast Cancer and Biliary Tract Cancer Patients

Breast cancer is the most common cancer in Europe, with more than 564,000 new cases and 145,000 deaths annually. Metastatic breast cancer is rising in younger populations and remains the leading cause... Read more

Pathology

view channel
Image: An adult fibrosarcoma case report has shown the importance of early diagnosis and targeted therapy (Photo courtesy of Sultana and Sailaja/Oncoscience)

Accurate Pathological Analysis Improves Treatment Outcomes for Adult Fibrosarcoma

Adult fibrosarcoma is a rare and highly aggressive malignancy that develops in connective tissue and often affects the limbs, trunk, or head and neck region. Diagnosis is complex because tumors can mimic... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.