We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




Gas Sensing Capsule Could Uphold Gut Health

By LabMedica International staff writers
Posted on 22 Mar 2015
A novel ingestible capsule can measure the concentration of selected intestinal gases, opening new possibilities for diagnosis, treatment, and health analysis.

Developed by researchers at RMIT University (Melbourne, Australia) and Monash University (Melbourne, Australia), the capsule features bio-compatible cladding, a gas permeable membrane, gas sensor, electronic circuits such as sensor drivers, micro-controllers, wireless high-frequency transmission electronics, and a battery. More...
Animal trials have demonstrated the effectiveness and safety of the capsules, which transmit data as they move through the gut to a handheld device such as a mobile phone, before passing out of the body.

Currently, doctors rely on indirect measurements, such as breath and fecal analysis, to gauge which gases are in the intestine. But an ingested sensor could directly analyze the gases released when bacteria ferment undigested food in the gut, such as carbon dioxide (CO2), hydrogen, methane, oxygen, and hydrogen sulphide. Supporting apps could have libraries that compare fractional gas concentrations in various states, so that the relative changes would indicate certain diseases or intestinal conditions. The study describing the capsule was published on March 12, 2015, in Trends in Biotechnology.

“A gas-sensing pill could give you a real-time glimpse into what’s going on in your gut; as the gases permeate the capsule, the sensors produce signals and digitize the data, then send it to an app,” said senior author Prof. Kourosh Kalantar-Zadeh, PHD, of RMIT. “If some organic compound like butyrate goes up, that means something is happening to the wall of the stomach, and the thing that is happening is generally not good, has to be detected, and should be addressed very quickly.”

“We know gut microorganisms produce gases as a by-product of their metabolism, but we understand very little about how that affects our health,” added Prof. Kalantar-Zadeh. “Being able to accurately measure intestinal gases could accelerate our knowledge about how specific gut microorganisms contribute to gastrointestinal disorders and food intake efficiency, enabling the development of new diagnostic techniques and treatments.”

Intestinal gases have been linked to colon cancer, irritable bowel syndrome (IBS) and inflammatory bowel disease (IBD), and could potentially be used as key biomarkers for assessing overall health.

Related Links:

RMIT University
Monash University



Gold Member
Chagas Disease Test
CHAGAS Cassette
Verification Panels for Assay Development & QC
Seroconversion Panels
New
TRAb Immunoassay
Chorus TRAb
New
Cytomegalovirus Real-Time PCR Test
Quanty CMV Virus System
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The GlycoLocate platform uses multi-omics and advanced computational biology algorithms to diagnose early-stage cancers (Photo courtesy of AOA Dx)

AI-Powered Blood Test Accurately Detects Ovarian Cancer

Ovarian cancer ranks as the fifth leading cause of cancer-related deaths in women, largely due to late-stage diagnoses. Although over 90% of women exhibit symptoms in Stage I, only 20% are diagnosed in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Pathology

view channel
Image: AI-analyzed images from the FDM microscope show platelet clumps in motion (Photo courtesy of Hirose et al CC-BY-ND)

AI Microscope Spots Deadly Blood Clots Before They Strike

Platelets are small blood cells that act as emergency responders in the body, rushing to areas of injury to help stop bleeding by forming clots. However, sometimes platelets can overreact, leading to complications.... Read more

Technology

view channel
Image: The new algorithms can help predict which patients have undiagnosed cancer (Photo courtesy of Adobe Stock)

Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer

Two newly developed advanced predictive algorithms leverage a person’s health conditions and basic blood test results to accurately predict the likelihood of having an undiagnosed cancer, including ch... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.