We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Lab-on-Paper Developed for Rapid Inexpensive Medical Diagnostics

By LabMedica International staff writers
Posted on 15 Mar 2015
A new paper-based platform has been created for conducting a wide range of complex medical diagnostics including Lyme disease, human immunodeficiency virus, Ebolavirus disease and malaria.

The key development was the invention of fluid actuated valves embedded in the paper that allow for sequential manipulation of sample fluids and multiple reagents in a controlled manner to perform complex multistep immune-detection tests without human intervention.

A team of engineers at the University of Rhode Island (URI; Kingston, RI, USA) used the principle of paper-based lateral flow test strips where sample fluid wicks along a strip of paper, reacts with embedded reagents, and produces a colored signal result. More...
However, more complex medical diagnostics such as enzymatic assay protocols require multiple reagents triggered at particular times during the process, which can only be accomplished autonomously using the proprietary microfluidic valve technology created by the engineers.

The lab-on-paper devices are constructed with multiple layers of paper printed with wax to create a three-dimensional structure of valves and channels along which the fluid travels, triggering the reagents at the appropriate time and generating a result. This new paper-based technology is the next generation of the lab-on-a-chip device the team reported in 2011, which has been further refined since then. That device is now smaller and employs an innovative micropump for precise fluid movement within the cartridge's microchannels.

The scientists have already succeeded in performing a feasibility study of their technology by detecting a biomarker for sepsis, a life-threatening complication from an infection. ProThera Biologics (East Providence, RI, USA) identified a biomarker that indicates a patient is going into shock from sepsis, and the company has collaborated with the URI engineers to develop a paper-based rapid test using this biomarker, and have established a startup company, Labonachip LLC (North Kingstown, RI, USA) to commercialize their technologies.

Mohammad Faghri, PhD, a professor of Mechanical Engineering and Applied Mechanics, and inventor of the platform said, “We combined the well-established test strip technology, micro-patterning techniques and our innovative paper-based valves to create a new class of strip tests that are capable of autonomously handling multiple reagents. The sample fluid activates the flow of reagents in a predetermined sequence and time. When combined with an optical reader, which could even be a conventional smart phone, the lab-on-paper device provides accurate quantitative results.”

Related Links:

University of Rhode Island
ProThera Biologics
Labonachip LLC



New
Gold Member
Serological Pipets
INTEGRA Serological Pipets
POC Helicobacter Pylori Test Kit
Hepy Urease Test
New
Anterior Nasal Specimen Collection Swabs
53-1195-TFS, 53-0100-TFS, 53-0101-TFS, 53-4582-TFS
New
Capillary Blood Collection Tube
IMPROMINI M3
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: Platelets sequester cfDNA during circulation (Murphy L. et al., Science, 2025; DOI: 10.1126/science.adp3971)

Platelets Could Improve Early and Minimally Invasive Detection of Cancer

Platelets are widely recognized for their role in blood clotting and scab formation, but they also play a crucial role in immune defense by detecting pathogens and recruiting immune cells.... Read more

Immunology

view channel
Image: The test could streamline clinical decision-making by identifying ideal candidates for immunotherapy upfront (Xiao, Y. et al. Cancer Biology & Medicine July 2025, 20250038)

Blood Test Predicts Immunotherapy Efficacy in Triple-Negative Breast Cancer

Triple-negative breast cancer (TNBC) is an aggressive subtype lacking targeted therapies, making immunotherapy a promising yet unpredictable option. Current biomarkers such as PD-L1 expression or tumor... Read more

Microbiology

view channel
Image: New diagnostics could predict a woman’s risk of a common sexually transmitted infection (Photo courtesy of 123RF)

New Markers Could Predict Risk of Severe Chlamydia Infection

Chlamydia trachomatis is a common sexually transmitted infection that can cause pelvic inflammatory disease, infertility, and other reproductive complications when it spreads to the upper genital tract.... Read more

Pathology

view channel
image: Researchers Marco Gustav (right) and MD Nic G. Reitsam (left) discuss the study data (Photo courtesy of Anja Stübner/EKFZ)

AI Model Simultaneously Detects Multiple Genetic Colorectal Cancer Markers in Tissue Samples

Colorectal cancer is a complex disease influenced by multiple genetic alterations. Traditionally, studies and diagnostic tools have focused on predicting only one mutation at a time, overlooking the interplay... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.