We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Glass Microbubbles Separate CD4+ T Cells by Buoyancy

By LabMedica International staff writers
Posted on 01 Feb 2015
For human immunodeficiency virus (HIV) infected patients the number of CD4+ T lymphocytes in peripheral blood is an important marker for monitoring disease progression of acquired immune deficiency syndrome (AIDS) and treatment efficacy. More...


The standard methods for enumerating cluster of differentiation 4+ (CD4+) T cells or mature T helper cells, by using fluorescence-activated cell sorting (FACS) or magnetic-activated cell sorting (MACS) are expensive and not easily accessible in remote or resource limited areas.

Scientists at the National Health Research Institutes (Zhunan Town, Taiwan) working with colleagues in the USA developed a method for a fast isolation strategy for CD4+ cells that involves mixing blood and glass microbubbles. After the specific binding of target cells to the microbubbles carrying specific antibodies on their surface, target cells will spontaneously float to the top of the blood vial and can be quickly separated. The use of this strategy demonstrated that the isolation of CD4+ cells in less than five minutes and with better than 90% efficiency. This strategy for cell isolation based on buoyancy and glass microbubbles is quick and inexpensive, minimizes blood handling, does not require magnetic fields, or centrifugation equipment, and could lead to new, efficient strategies for AIDS diagnosis in resource-limited areas.

One critical advantage of glass microbubbles is their reduced cost. These glass microbubbles have been mass-produced for use in many industrial applications including insulation, construction, paints, and transportation. The surface of the glass microbubbles can also be modified for attaching a variety of biochemicals to, using readily available protocols developed for glass substrate. In addition the buoyancy of the glass microbubbles allows for the capturing and separation of target cells from the unwanted cells by a simple "flip tube" motion. Together these features make the technology very attractive to the development of low-cost point-of-care devices for HIV monitoring. The study was published on December 26, 2014, in the journal Technology.

Related Links:
Taiwanese National Health Research Institutes



Gold Member
Respiratory Syncytial Virus Test
OSOM® RSV Test
Portable Electronic Pipette
Mini 96
ESR Analyzer
TEST1 2.0
Blood Glucose Test Strip
AutoSense Test
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The genomic test measures eight gene activities in a melanoma tumor and combines this data with patient factors like age and tumor thickness (Photo courtesy of 123RF)

Genomic Test Could Reduce Lymph Node Biopsy Surgery in Melanoma Patients

Accurately determining whether melanoma has spread to the lymph nodes is crucial for guiding treatment decisions, yet the standard procedure—sentinel lymph node biopsy—remains invasive, costly, and unnecessary... Read more

Hematology

view channel
Image: New evidence shows viscoelastic testing can improve assessment of blood clotting during postpartum hemorrhage (Photo courtesy of 123RF)

Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage

Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.