We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Cell Culture Technique Leads to Tailor-Made Cancer Treatments

By LabMedica International staff writers
Posted on 04 Jan 2015
A novel in situ capture and culture methodology has been developed for ex vivo expansion of circulating tumor cells (CTCs) using a three dimensional co-culture model, simulating a tumor microenvironment to support tumor development.

The potential utility of CTCs to guide clinical care in oncology patients has gained momentum with emerging micro- and nano-technologies and tumor progression and metastasis depends both on enumeration and on obtaining sufficient numbers of CTCs for downstream assays.

Scientists at the University of Michigan (Ann Arbor, MI, USA) developed the capture and culture process with a microfluidic chip device that captures cancer cells as a blood sample is pumped across it. More...
The team used a chip made of polydimethylsiloxane on a 1-inch by 3-inch glass slide. They covered the chip with microscopic posts that slow and trap cells, then coated it with antibodies that bind to the cancer cells.

Blood drawn from early lung cancer patients was flowed through the CTC-capture device at a flow rate of 1 mL/hour for 1 mL total for each device. After the cancer cells were captured on the chip, the team pumped in a growth medium mixture. They also added cancer-associated fibroblast cells. This created a three-dimensional environment that closely mimics the conditions inside the body of a cancer patient. After capture, cells also were fixed and immunofluorescently stained with labelled antibodies. The devices were scanned using a programmed inverted fluorescence microscope (Nikon, Melville, NY, USA). Positive and negative cells were designated as CTCs depending on the staining and enumerated.

The investigators used many other techniques including 3-D spheroid assays, invasion assays, sequencing, and real time polymerase chain reaction, (RT-PCR) which were analyzed on the ABI 7900HT instrument (Applied Biosystems; Foster City, CA; USA). After the cancer cells were captured on the chip, the team pumped in a mixture of collagen and Matrigel growth medium. The captured cancer cells prospered in the mixture, reproducing additional cells in 73% of tested samples. It was a dramatic improvement over earlier methods, which studied later-stage cancer patients and saw success rates of only around 20%.

Max S. Wicha, MD, distinguished professor of oncology, and coauthor of the study said, “The technology can be applied to most cancers, including breast, lung, pancreatic and others. It could enable doctors to follow the progression of each patient's disease much more closely. Cancer cells change constantly and they can quickly develop resistance to a given treatment. A device like this will enable us to follow the cancer's progression in real time. If a cancer develops resistance to one therapy, we'll be able to quickly change to a different treatment.” The study was published on December 1, 2014, in the journal Oncotarget.

Related Links:

University of Michigan  
Nikon
Applied Biosystems



Gold Member
Troponin T QC
Troponin T Quality Control
Serological Pipet Controller
PIPETBOY GENIUS
New
Celiac Disease Test
Anti-Gliadin IgG ELISA
New
Silver Member
Fibrinolysis Assay
HemosIL Fibrinolysis Assay Panel
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








DIASOURCE (A Biovendor Company)

Channels

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: An “evolutionary” approach to treating metastatic breast cancer could allow therapy choices to be adapted as patients’ cancer changes (Photo courtesy of 123RF)

Evolutionary Clinical Trial to Identify Novel Biomarker-Driven Therapies for Metastatic Breast Cancer

Metastatic breast cancer, which occurs when cancer spreads from the breast to other parts of the body, is one of the most difficult cancers to treat. Nearly 90% of patients with metastatic cancer will... Read more

Pathology

view channel
Image: A real-time trial has shown that AI could speed cancer care (Photo courtesy of Campanella, et al., Nature Medicine)

AI Accurately Predicts Genetic Mutations from Routine Pathology Slides for Faster Cancer Care

Current cancer treatment decisions are often guided by genetic testing, which can be expensive, time-consuming, and not always available at leading hospitals. For patients with lung adenocarcinoma, a critical... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.