Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Noninvasive Glucose Sensing Uses Mid-Infrared Light

By LabMedica International staff writers
Posted on 02 Sep 2014
A laser has been developed to measure people's blood sugar, and the technique could allow diabetics to check their condition without pricking themselves to draw blood. More...


Bioengineers at the Princeton University (NJ, USA) utilized a hollow-core fiber based optical setup for light delivery and collection along with a broadly tunable quantum cascade laser to obtain spectra from human subjects and use standard chemometric techniques. In vivo glucose sensing using mid-infrared (IR) spectra was conducted with three healthy human subjects starting on an empty stomach with glucose levels were typically around 80 mg/dL at this time to obtain spectra for their low levels.

Light from a pulsed external cavity Quantum Cascade Laser (Daylight Solutions Inc.; San Diego, CA, USA) with a tuning range between 8–10 μm was focused into a 500 μm diameter hollow-core fiber (Opto-Knowledge Systems, Inc.; Torrance, CA, USA) responsible for delivering light onto a region of the human palm between the thumb and index finger. Backscattered light from the skin was collected using a bundle of six fibers, identical in composition and size to the delivery fiber, arranged in a circular fashion around the delivery fiber and coupled directly to a commercial liquid nitrogen cooled mercury cadmium telluride (MCT) detector.

Numerical values for a subject’s blood glucose concentration level were obtained using a commercial electrochemical meter (OneTouch; High Wycombe, UK) prior to the optical study. Up to ten spectra were taken for each concentration, with a single spectral scan taking roughly 20 seconds; upon conclusion of such a set, the subject once again obtained a reading from the commercial meter to ascertain the stability of blood glucose levels throughout the elapsed time period.

The mid-IR spectra obtained in vivo from human skin yield clinically accurate predictions for blood glucose levels for concentrations between 75–160 mg/dL using both partial least-squares regression (PLSR) and derivative spectroscopy techniques with given calibration sets yielded average errors only 2% more than those from a commercial electrochemical meter. The glucose absorption features in mid-IR skin visibly change with respect to increasing concentration, as absorption minima increase in depth and width. The authors concluded that this application of mid-IR light to noninvasive in vivo glucose sensing yields a robust and clinically accurate system that transcends boundaries set in the past which limited the scope of mid-IR in vivo applications.

Claire Gmachl, PhD, a professor of Electrical Engineering and senior author of the study, said, “With this work we hope to improve the lives of many diabetes sufferers who depend on frequent blood glucose monitoring. Because the quantum cascade laser can be designed to emit light across a very wide wavelength range, its usability is not just for glucose detection, but could conceivably be used for other medical sensing and monitoring applications.” The scientists are working on ways make the device much smaller. The study was published on July 1, 2014, in the journal Biomedical Optics Express.

Related Links:

Princeton University
Daylight Solutions 
Opto-Knowledge Systems 



New
Gold Member
Hematology Analyzer
Medonic M32B
POC Helicobacter Pylori Test Kit
Hepy Urease Test
New
Human Estradiol Assay
Human Estradiol CLIA Kit
New
Gold Member
Immunochromatographic Assay
CRYPTO Cassette
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: Platelets sequester cfDNA during circulation (Murphy L. et al., Science, 2025; DOI: 10.1126/science.adp3971)

Platelets Could Improve Early and Minimally Invasive Detection of Cancer

Platelets are widely recognized for their role in blood clotting and scab formation, but they also play a crucial role in immune defense by detecting pathogens and recruiting immune cells.... Read more

Immunology

view channel
Image: The test could streamline clinical decision-making by identifying ideal candidates for immunotherapy upfront (Xiao, Y. et al. Cancer Biology & Medicine July 2025, 20250038)

Blood Test Predicts Immunotherapy Efficacy in Triple-Negative Breast Cancer

Triple-negative breast cancer (TNBC) is an aggressive subtype lacking targeted therapies, making immunotherapy a promising yet unpredictable option. Current biomarkers such as PD-L1 expression or tumor... Read more

Microbiology

view channel
Image: New diagnostics could predict a woman’s risk of a common sexually transmitted infection (Photo courtesy of 123RF)

New Markers Could Predict Risk of Severe Chlamydia Infection

Chlamydia trachomatis is a common sexually transmitted infection that can cause pelvic inflammatory disease, infertility, and other reproductive complications when it spreads to the upper genital tract.... Read more

Pathology

view channel
image: Researchers Marco Gustav (right) and MD Nic G. Reitsam (left) discuss the study data (Photo courtesy of Anja Stübner/EKFZ)

AI Model Simultaneously Detects Multiple Genetic Colorectal Cancer Markers in Tissue Samples

Colorectal cancer is a complex disease influenced by multiple genetic alterations. Traditionally, studies and diagnostic tools have focused on predicting only one mutation at a time, overlooking the interplay... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.