We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Combined Spectroscopy System Rapidly Scans Skin Lesions for Cancer Signs

By LabMedica International staff writers
Posted on 18 Aug 2014
A team of biomedical engineers has designed an instrument for the rapid diagnosis of skin cancer that does not rely on examination of biopsy specimens.

Skin cancer is detected currently by examining biopsy specimens. More...
However, statistics suggest that for every case of skin cancer detected there are roughly 25 negative biopsies performed. To correct this situation, investigators at the University of Texas, Austin (USA) combined three advanced spectroscopy instruments into a single tool for scanning skin lesions and detecting changes in the way that skin tissues interact with light when normal skin becomes cancerous with enlarged cell nuclei and disorganization of the uppermost layers of the skin.

The multimodal spectroscopy (MMS) device characterizes the tissue microenvironment via morphological changes observed through DRS (diffuse reflectance spectroscopy) and biochemical information via RS (Raman spectroscopy) and LIFS (laser-induced fluorescence spectroscopy).

The DRS measurement is a function of tissue scattering and absorption properties, which in turn are dependent upon tissue morphological changes. Therefore, analysis yields information about tissue blood fraction, oxygen saturation, tissue scattering coefficient, nuclear morphology, and collagen structure. LIFS is biochemically sensitive, as it interrogates endogenous fluorophores such as nicotinamide adenine dinucleotide (NADH), flavin adenine dinucleotide (FAD), and collagen. Their fluorescence levels change with cancer progression that is associated with altered cellular metabolic pathways (NADH, FAD) or an altered structural tissue matrix (collagen). Raman spectroscopy exploits the inelastic scattering (so-called “Raman” scattering) phenomena to detect spectral signatures of important disease progression biomarkers, including lipids, proteins, and amino acids.

The spectroscopic and computer equipment required by the system fits onto a portable utility cart, and the probe is about the size of a pen. Each reading takes about 4.5 seconds to perform.

"Skin is a natural organ to apply imaging and spectroscopy devices to because of its easy access," said senior author Dr. James W. Tunnell, associate professor of biomedical engineering at the University of Texas, Austin. Most devices have been at the research stage for the last 10 years or so, but several are now undergoing clinical development. This probe that is able to combine all three spectral modalities is the next critical step to translating spectroscopic technology to the clinic."

A detailed description of the MMS device was published in the August 5, 2014, online edition of the journal Review of Scientific Instruments.

Related Links:
University of Texas, Austin


Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Silver Member
H-FABP Assay
Heart-Type Fatty Acid-Binding Protein Assay
New
Silver Member
Fixed Speed Tube Rocker
GTR-FS
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The GlycoLocate platform uses multi-omics and advanced computational biology algorithms to diagnose early-stage cancers (Photo courtesy of AOA Dx)

AI-Powered Blood Test Accurately Detects Ovarian Cancer

Ovarian cancer ranks as the fifth leading cause of cancer-related deaths in women, largely due to late-stage diagnoses. Although over 90% of women exhibit symptoms in Stage I, only 20% are diagnosed in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Pathology

view channel
Image: AI-analyzed images from the FDM microscope show platelet clumps in motion (Photo courtesy of Hirose et al CC-BY-ND)

AI Microscope Spots Deadly Blood Clots Before They Strike

Platelets are small blood cells that act as emergency responders in the body, rushing to areas of injury to help stop bleeding by forming clots. However, sometimes platelets can overreact, leading to complications.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.