Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Paper-Based Microfluidics Developed for Molecular Diagnostic Testing

By LabMedica International staff writers
Posted on 01 Apr 2014
A low cost, safe, disposable, rapid and self-sustainable paper-based platform for diagnostic testing, known as lab-on-paper, has been developed. More...


Such diagnostic tests are in high demand, targeting diseases such as tuberculosis and leishmaniasis, mainly in the developing world, where they remain major impoverishment factors for local communities and there is a strong interest in the use of biopolymers in the electronic and biomedical industries, towards low-cost applications.

Scientists at the Universidade Nova de Lisboa (Lisbon, Portugal) have developed paper-based microfluidics for molecular diagnostic testing. Paper properties were evaluated and compared to nitrocellulose, the most commonly used material in lateral flow and other rapid tests. They focused on the use of paper as a substrate for microfluidic applications, through an eco-friendly wax-printing technology, with three main and distinct colorimetric approaches: enzymatic reactions, immunoassays, and nucleic acid sequence identification.

Colorimetric glucose quantification was achieved through enzymatic reactions performed within specific zones of the paper-based device. The coloration achieved increased with growing glucose concentration and was highly homogeneous, covering all the surface of the paper reaction zones in a three dimensional (3D) sensor format. These devices showed a major advantage when compared to the 2D lateral flow glucose sensors, where some carryover of the colored products usually occurs.

The detection of anti-Leishmania antibodies in canine sera was conceptually achieved using a paper-based 96-well enzyme-linked immunosorbent assay format. However, optimization is still needed for this test, regarding the efficiency of the immobilization of antigens on the cellulose fibers. The detection of Mycobacterium tuberculosis (MTB) nucleic acids integrated with a non-cross-linking gold nanoprobe detection scheme was also achieved in a wax-printed 384-well paper-based microplate, by the hybridization with a species-specific probe. The whole process, including the polymerase chain reaction (PCR) amplification step, takes less than two-and-half hours, which is considerably faster than traditional methods.

The authors concluded that they obtained results with the easy-to-use diagnostic biosensors that show promise towards the future development of simple and cost-effective paper-based diagnostic devices. In future studies, they will simplify the paper-platform assay for MTB by the elimination of the polymerase chain reaction step, which depends on the use of thermocycler equipment and its replacement by an undemanding isothermal DNA amplification such as loop-mediated isothermal DNA amplification (LAMP). The study was published on February 12, 2014, in the journal Nanotechnology.

Related Links:

Universidade Nova de Lisboa 



New
Gold Member
Hematology Analyzer
Medonic M32B
Portable Electronic Pipette
Mini 96
New
Sample Transportation System
Tempus1800 Necto
New
Automatic Chemiluminescence Immunoassay Analyzer
Shine i2000
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The nanotechnology-based liquid biopsy test could identify cancer at its early stages (Photo courtesy of 123RF)

2-Hour Cancer Blood Test to Transform Tumor Detection

Glioblastoma and other aggressive cancers remain difficult to control largely because tumors can recur after treatment. Current diagnostic methods, such as invasive biopsies or expensive liquid biopsies,... Read more

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Pathology

view channel
Image: An adult fibrosarcoma case report has shown the importance of early diagnosis and targeted therapy (Photo courtesy of Sultana and Sailaja/Oncoscience)

Accurate Pathological Analysis Improves Treatment Outcomes for Adult Fibrosarcoma

Adult fibrosarcoma is a rare and highly aggressive malignancy that develops in connective tissue and often affects the limbs, trunk, or head and neck region. Diagnosis is complex because tumors can mimic... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.