Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




New Tool Developed to Identify Genetic Risk Factors

By LabMedica International staff writers
Posted on 13 Feb 2014
A new biological pathway-based computational model has been developed to identify underlying genetic connections between different diseases.

The model called the Pathway-based Human Phenotype Network (PHPN) mines the data present in large publicly available disease datasets to find shared single nucleotide polymorphisms (SNPs), genes, or pathways and expresses them in a visual form.

Geneticists at the Geisel School of Medicine at Dartmouth (Hanover, NH, USA) built a pathway-based human phenotype network (PHPN) of over 800 physical attributes, diseases, and behavioral traits, based on about 2,300 genes and 1,200 biological pathways. More...
Using genome-wide association study (GWAS) phenotype-to-genes associations, and pathway data from a free, open-source, curated and peer reviewed pathway database Reactome, they connected human traits based on the common patterns of human biological pathways, detecting more pleiotropic effects, and expanding previous studies from a gene-centric approach to that of shared cell-processes.

PHPN supports the integration of genomic and phenotypic data to uncover significant links between traits, attributes, and disease. This offers tremendous potential in identifying risk factors for certain diseases. At the same time, it can reveal important targets for therapeutic intervention. The automatic classification of phenotypes into “phenotype classes,” using the network’s topological modularity and a standard community detection algorithm, showed very promising results. Two traits that were connected in the PHPN but did not share any common associated genes or any clear-cut biological relationship were von Willebrand factor and FVIII levels (vWF) and hippocampal atrophy (HA).

Christian Darabos, PhD, the lead author of the study, said, “The intuitive network representation of the knowledge mined from several large-scale datasets makes the information accessible to anyone. It lies at the crossroads of computational genetics, systems biology, information theory, and network science. As a proof of concept, the PHPN has proven capable of identifying well-documented interactions, and many novel links that remain to be explored in depth. The PHPN is a hypothesis-generating tool, potentially capable of identifying yet uncharacterized common drug targets.” As a next step, the scientists will refine statistical methods, isolate networks for optimal results, and compare previous work on phenotype networks. The study was published on January 25, 2014, in the journal BioDataMining.

Related Links:

Geisel School of Medicine at Dartmouth
Reactome



New
Gold Member
Cardiovascular Risk Test
Metabolic Syndrome Array I & II
POC Helicobacter Pylori Test Kit
Hepy Urease Test
New
Alcohol Testing Device
Dräger Alcotest 7000
New
Sperm Quality Analyis Kit
QwikCheck Beads Precision and Linearity Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: Platelets sequester cfDNA during circulation (Murphy L. et al., Science, 2025; DOI: 10.1126/science.adp3971)

Platelets Could Improve Early and Minimally Invasive Detection of Cancer

Platelets are widely recognized for their role in blood clotting and scab formation, but they also play a crucial role in immune defense by detecting pathogens and recruiting immune cells.... Read more

Immunology

view channel
Image: The test could streamline clinical decision-making by identifying ideal candidates for immunotherapy upfront (Xiao, Y. et al. Cancer Biology & Medicine July 2025, 20250038)

Blood Test Predicts Immunotherapy Efficacy in Triple-Negative Breast Cancer

Triple-negative breast cancer (TNBC) is an aggressive subtype lacking targeted therapies, making immunotherapy a promising yet unpredictable option. Current biomarkers such as PD-L1 expression or tumor... Read more

Microbiology

view channel
Image: New diagnostics could predict a woman’s risk of a common sexually transmitted infection (Photo courtesy of 123RF)

New Markers Could Predict Risk of Severe Chlamydia Infection

Chlamydia trachomatis is a common sexually transmitted infection that can cause pelvic inflammatory disease, infertility, and other reproductive complications when it spreads to the upper genital tract.... Read more

Pathology

view channel
image: Researchers Marco Gustav (right) and MD Nic G. Reitsam (left) discuss the study data (Photo courtesy of Anja Stübner/EKFZ)

AI Model Simultaneously Detects Multiple Genetic Colorectal Cancer Markers in Tissue Samples

Colorectal cancer is a complex disease influenced by multiple genetic alterations. Traditionally, studies and diagnostic tools have focused on predicting only one mutation at a time, overlooking the interplay... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.