We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Novel Microscopy Technique Tracks Moving Microbes

By LabMedica International staff writers
Posted on 11 Oct 2012
An innovative way to observe and track large numbers of rapidly moving objects under a microscope, capturing precise motion paths in three dimensions, has been developed. More...


The technique allows for the following of an unprecedented 24,000 rapidly moving cells over wide fields of view and through large sample volumes, recording each cell's path for as long as 20 seconds.

Scientists at the University of California (UCLA; Los Angeles, CA, USA) used offset beams of red and blue light to create holographic information that, when processed using sophisticated software, accurately reveal the paths of objects moving under a microscope. The y tracked several cohorts of more than 1,500 human male gamete cells over a relatively wide field of view of more than 17 square millimeters and large sample volume of up to 17 cubic millimeters over several seconds.


The technique, along with a novel software algorithm that the team developed to process observational data, revealed previously unknown statistical pathways for the cells. The scientists found that human male gamete cells travel in a series of twists and turns along a constantly changing path that occasionally follows a tight helix, a spiral that, 90% of the time, is in a clockwise or right-handed direction. Because only four to five percent of the cells in a given sample traveled in a helical path at any given time, microscopists would not have been able to observe the rare behavior without the new high-throughput microscopy technique.

The authors report reports observations of 24,000 cells over the duration of this study. Such a large number of observations provide a statistically significant dataset and a useful methodology for potentially studying a range of subjects, from the impact of pharmaceuticals and other substances on large numbers of cells, in real time, to fertility treatments and drug development. The same approach may also enable scientists to study quick-moving, single-celled microorganisms. The new lens-free holographic imaging technique could potentially reveal unknown elements of protozoan behavior and allow real-time testing of novel drug treatments to combat some of the most pathogenic forms of those organisms. The study was published on September 17, 2012, in the journal Proceedings of the National Academy of Sciences of the United States of America (PNAS).

Related Links:

University of California, Los Angeles



New
Gold Member
Quality Control Material
iPLEX Pro Exome QC Panel
3-Part Differential Hematology Analyzer
Swelab Alfa Plus Sampler
New
Anti-Thyroid Peroxidase Assay
LIAISON Anti-TPO
New
Automated PCR Setup
ESTREAM
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








DIASOURCE (A Biovendor Company)

Channels

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: A simple blood test could replace surgical biopsies for early detecion of heart transplant rejection (Photo courtesy of Shutterstock)

Blood Test Detects Organ Rejection in Heart Transplant Patients

Following a heart transplant, patients are required to undergo surgical biopsies so that physicians can assess the possibility of organ rejection. Rejection happens when the recipient’s immune system identifies... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.