We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Optical Technique Promises Rapid and Accurate Diagnosis of Malaria

By LabMedica International staff writers
Posted on 10 May 2012
A promising new optical imaging system may make the diagnosis of malaria much easier, faster, and more accurate.

The new system uses speckle imaging, an optical sensing technique that measures the differences in how laser light bounces off the membranes of healthy and infected red blood cells. More...


An international team of scientists led by those at Materials Technology Institute, (Trieste, Italy) compared the apparently random scattering, called speckling of light as it builds up from multiple images. A clear statistical pattern emerges that identifies cells that harbor the parasite responsible for malaria. The team has preliminary results involving 25 cell samples of which 12 were healthy and 13 infected with malaria.

The specific technique the scientists used is called Secondary Speckle Sensing Microscopy. By applying this imaging technique to an automated high-throughput system, the scientists were able to deliver results in as little as 30 minutes. They did so with a high rate of accuracy and without the need for highly trained technicians and a well-equipped hospital laboratory. The current time to diagnosis in most African medical centers is typically between 8-10 hours.

Secondary Speckle Sensing Microscopy consists of a custom inverted microscope in which the sample of red blood cells is illuminated by a tilted laser beam (Laser Physics; Milton Green, UK). This produces a time-varied speckle pattern field based on the cells' thermal vibration and the movement of their membranes, traits that differ in healthy and diseased states. The speckle patterns are inspected under the microscope and recorded on a camera at a high frame rate. Using two automated analytical methods called fuzzy logic and principal component analysis; scientists scour a set of speckle parameters to extract statistical information about changes in red blood cells' membranes and their flickering movements. Scientists then make a diagnosis based on statistical correlations in speckle patterns between healthy and diseased cells.

Dan Cojoc, PhD, lead author of the study, said, "A new diagnostic tool is urgently needed. With a fast, portable, low-cost, and accurate diagnostic tool, physicians can confidently and quickly administer the correct therapy." The current diagnostic gold standard for malaria is a Giemsa-stained blood smear, which uses optical microscopy to identify different species of the malaria parasite, Plasmodium, in blood samples. This technique requires skilled medical professionals trained to identify the telltale signs of the parasite throughout its life cycle and its population density in the bloodstream. The study was published in the April 2012 issue of Biomedical Optics Express.

Related Links:

Materials Technology Institute
Laser Physics




Gold Member
Quantitative POC Immunoassay Analyzer
EASY READER+
POC Helicobacter Pylori Test Kit
Hepy Urease Test
New
Capillary Blood Collection Tube
IMPROMINI M3
New
Sperm Quality Analyis Kit
QwikCheck Beads Precision and Linearity Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Immunology

view channel
Image: The test could streamline clinical decision-making by identifying ideal candidates for immunotherapy upfront (Xiao, Y. et al. Cancer Biology & Medicine July 2025, 20250038)

Blood Test Predicts Immunotherapy Efficacy in Triple-Negative Breast Cancer

Triple-negative breast cancer (TNBC) is an aggressive subtype lacking targeted therapies, making immunotherapy a promising yet unpredictable option. Current biomarkers such as PD-L1 expression or tumor... Read more

Microbiology

view channel
Image: New diagnostics could predict a woman’s risk of a common sexually transmitted infection (Photo courtesy of 123RF)

New Markers Could Predict Risk of Severe Chlamydia Infection

Chlamydia trachomatis is a common sexually transmitted infection that can cause pelvic inflammatory disease, infertility, and other reproductive complications when it spreads to the upper genital tract.... Read more

Pathology

view channel
image: Researchers Marco Gustav (right) and MD Nic G. Reitsam (left) discuss the study data (Photo courtesy of Anja Stübner/EKFZ)

AI Model Simultaneously Detects Multiple Genetic Colorectal Cancer Markers in Tissue Samples

Colorectal cancer is a complex disease influenced by multiple genetic alterations. Traditionally, studies and diagnostic tools have focused on predicting only one mutation at a time, overlooking the interplay... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.