Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Werfen

Download Mobile App




Modified Glucose Meters Measure More Than Sugar

By LabMedica International staff writers
Posted on 11 Aug 2011
Point-of-care glucose meters have been adapted for other target molecules by coupling them with a class of molecular sensors called functional DNA sensors. More...


Functional DNA sensors use short segments of DNA that bind to specific targets and a number of functional DNAs and ribonucleic acids (RNAs) are available to recognize a wide variety of targets.

Chemists at the University of Illinois (Urbana-Champaign, IL, USA) modified the meters so that they can be used as simple, portable, inexpensive meters for a number of target molecules in blood, serum, water or food. The DNA segments, immobilized on magnetic particles, are bound to the enzyme invertase, which can catalyze conversion of sucrose to glucose. The user adds a sample of blood, serum, or water to the functional DNA sensor to test for drugs, disease markers, contaminants or other molecules. When the target molecule binds to the DNA, invertase is released into the solution. After removing the magnetic particle by a magnet, the glucose level of the sample rises in proportion to the amount of invertase released, so the user then can employ a glucose meter to quantify the target molecule in the original sample.

The scientists demonstrated using functional DNA with glucose meters to detect cocaine, the disease marker interferon, adenosine, and uranium. The two-step method could be used to detect any kind of molecule that a functional DNA or RNA can bind.

The scientists next plan to further simplify their method, which now requires users to first apply the sample to the functional DNA sensor and then to the glucose meter. Yu Li, PhD, the senior author of the study, said, "We are working on integrating the procedures into one step to make it even simpler. Our technology is new and, given time, it will be developed into an even more user-friendly format.” The study was published on July 24, 2011, in the journal Nature Chemistry.

Related Links:
University of Illinois




New
Gold Member
Ketosis and DKA Test
D-3-Hydroxybutyrate (Ranbut) Assay
Portable Electronic Pipette
Mini 96
Gram-Negative Blood Culture Assay
LIAISON PLEX Gram-Negative Blood Culture Assay
8-Channel Pipette
SAPPHIRE 20–300 µL
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: A schematic illustrating the coagulation cascade in vitro (Photo courtesy of Harris, N., 2024)

ADLM’s New Coagulation Testing Guidance to Improve Care for Patients on Blood Thinners

Direct oral anticoagulants (DOACs) are one of the most common types of blood thinners. Patients take them to prevent a host of complications that could arise from blood clotting, including stroke, deep... Read more

Microbiology

view channel
Image: EBP and EBP plus have received FDA 510(k) clearance and CE-IVDR Certification for use on the BD COR system (Photo courtesy of BD)

High-Throughput Enteric Panels Detect Multiple GI Bacterial Infections from Single Stool Swab Sample

Gastrointestinal (GI) infections are among the most common causes of illness worldwide, leading to over 1.7 million deaths annually and placing a heavy burden on healthcare systems. Conventional diagnostic... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.