We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Mass Spectrometry Detects Bacteria Without Time-Consuming Isolation and Multiplication

By LabMedica International staff writers
Posted on 06 May 2025

Speed and accuracy are essential when diagnosing diseases. More...

Traditionally, diagnosing bacterial infections involves the labor-intensive process of isolating pathogens and cultivating bacterial cultures, often resulting in several days of waiting before targeted treatment can begin. Researchers have now developed a groundbreaking method that can identify bacteria with unprecedented speed, reducing the waiting time from several days to just a few minutes.

The innovative approach, developed by researchers at Technical University of Munich (TUM, Munich, Germany) and Imperial College London (London, UK) uses mass spectrometry to detect specific metabolic products of bacteria directly from tissue and stool samples. Central to this process is a database that currently includes 232 medically relevant bacterial species and their associated metabolic products. From this database, biomarkers are extracted to allow for the direct identification of specific bacteria.

The new method is capable of identifying bacteria responsible for a variety of serious conditions, including stomach cancer, pneumonia, meningitis, preterm birth, gonorrhea, and sepsis. To ensure that this method becomes a regular tool in clinical settings, the biomarker database needs to be expanded. The researchers note that over 1,400 bacterial pathogens are known, and their specific metabolic products need to be identified and added to the database. The team also sees significant potential for this method in personalized medicine, where treatments can be tailored precisely to individual patients based on the specific bacteria detected.

"Our innovative approach is not to look directly for the pathogenic bacteria, but only for their metabolic products. This allows us to detect them indirectly, but much more quickly," said first author Wei Chen.

"This is one of the most important future topics in biotechnology and medicine. Targeted interventions can dramatically improve the chances of successful treatment. As analysts, we develop modern tools and methods for doctors to do this," added Prof. Nicole Strittmatter.

Related Links:
TUM 
Imperial College London 


New
Gold Member
Blood Gas Analyzer
Stat Profile pHOx
3-Part Differential Hematology Analyzer
Swelab Alfa Plus Sampler
New
Alcohol Testing Device
Dräger Alcotest 7000
New
Rapid Test Reader
DIA5000
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








DIASOURCE (A Biovendor Company)

Channels

Molecular Diagnostics

view channel
Image: The VeraBIND Tau assay is a novel blood test that identifies the presence of active tau pathology (Photo courtesy of 123RF)

First Blood-Based Test Measures Key Alzheimer's Biomarker in Asymptomatic and Symptomatic Individuals

Alzheimer’s disease (AD), the sixth leading cause of death in the United States, affects an estimated 7.2 million Americans aged 65 or older. Current diagnostic methods for AD are often invasive, expensive,... Read more

Hematology

view channel
Image: The microfluidic device for passive separation of platelet-rich plasma from whole blood (Photo courtesy of University of the Basque Country)

Portable and Disposable Device Obtains Platelet-Rich Plasma Without Complex Equipment

Platelet-rich plasma (PRP) plays a crucial role in regenerative medicine due to its ability to accelerate healing and repair tissue. However, obtaining PRP traditionally requires expensive centrifugation... Read more

Immunology

view channel
Image: The 3D paper-based analytical device has shown high clinical accuracy for adult-onset immunodeficiency (Photo courtesy of National Taiwan University)

Paper-Based Device Accurately Detects Immune Defects in 10 Minutes

Patients with hidden immune defects are especially vulnerable to severe and persistent infections, often due to autoantibodies that block interferon-gamma (IFN-γ), a key molecule in immune defense.... Read more

Pathology

view channel
Image: Researchers have developed a novel method to analyze tumor growth rates (Photo courtesy of Adobe Stock)

Novel Method To Analyze Tumor Growth Rates Helps Tracks Progression Between Diagnosis and Surgery

Patients diagnosed with breast cancer often worry about how quickly their tumors grow while they wait for surgery, and whether delays in treatment might allow the disease to spread beyond the point of cure.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.