We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
BIO-RAD LABORATORIES

Olympus

Manufactures optical and digital equipment for the healthcare and consumer electronics sectors, including endoscopy a... read more Featured Products: More products

Download Mobile App




New Fluorescent DNA Label Reveals Nanoscopic Cancer Features

By LabMedica International staff writers
Posted on 15 Mar 2022
Print article
Image: Visualizing the invisible: New fluorescent DNA label reveals nanoscopic cancer features using a custom-built system on the Olympus IX71 Inverted Microscope (Photo courtesy of Fluorescence Microscopes)
Image: Visualizing the invisible: New fluorescent DNA label reveals nanoscopic cancer features using a custom-built system on the Olympus IX71 Inverted Microscope (Photo courtesy of Fluorescence Microscopes)

Recent advances in superresolution fluorescence nanoscopy have transformed biological imaging as it seamlessly combines nanoscale resolution with molecular specificity. It is now routinely used in basic biological studies to visualize molecular structure.

Among various types of superresolution microscopy techniques, stochastic optical reconstruction microscopy (STORM) stands out as one of the simplest yet most powerful superresolution microscopy systems because of its superior spatial resolution and the ability to use simple organic fluorophores.

Medical Bioengineers at the University of Pittsburgh (Pittsburgh, PA, USA) have developed a new fluorescent label that gives a clearer picture of how DNA architecture is disrupted in cancer cells. The findings could improve cancer diagnoses for patients and classification of future cancer risk. Inside the cell's nucleus, DNA strands are wound around proteins like beads on a string. Pathologists routinely use traditional light microscopes to visualize disruption to this DNA-protein complex, or chromatin, as a marker of cancer or precancerous lesions.

The scientists formulated a new label called Hoechst-Cy5 by combining the DNA-binding molecule Cy5 and a fluorescent dye called Hoechst with ideal blinking properties for superresolution microscopy. STORM images were acquired using our custom-built system on the Olympus IX71 inverted microscope (Olympus, Tokyo, Japan). After showing that the new label produced higher resolution images than other dyes, the team compared colorectal tissue from normal, precancerous and cancerous lesions. In normal cells, chromatin is densely packed, especially at the edges of the nucleus. Condensed DNA glows brightly because a higher density of labels emits a stronger signal, while loosely packed chromatin produces a dimmer signal.

The images showed that as cancer progresses, chromatin becomes less densely packed, and the compact structure at the nuclear border is severely disrupted. To see if chromatin structure could hold clues about future cancer risk, the investigators evaluated patients with Lynch syndrome, a heritable condition that increases the risk of several cancer types, including colon cancer. They looked at non-cancerous colorectal tissue from healthy people without Lynch syndrome and Lynch patients with or without a personal history of cancer. The differences were striking. In Lynch patients who previously had colon cancer, chromatin was much less condensed than in healthy samples, suggesting that chromatin disruption could be an early sign of cancer development, even in tissue that looks completely normal to pathologists.

Yang Liu, Ph.D., associate professor of medicine and bioengineering, and senior author of the study, said, “Early-stage lesions can have very different clinical outcomes. Some people develop cancer very quickly, and others stay at the precursor stage for a long time. Stratifying cancer risk is a major challenge in cancer prevention.” The study was published on March 4, 2022 in the journal Science Advances.

Related Links:
University of Pittsburgh 
Olympus 

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
New
Gold Member
Magnetic Bead Separation Modules
MAG and HEATMAG

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: A false color scanning election micrograph of lung cancer cells grown in culture (Photo courtesy of Anne Weston)

AI Tool Precisely Matches Cancer Drugs to Patients Using Information from Each Tumor Cell

Current strategies for matching cancer patients with specific treatments often depend on bulk sequencing of tumor DNA and RNA, which provides an average profile from all cells within a tumor sample.... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: Fingertip blood sample collection on the Babson Handwarmer (Photo courtesy of Babson Diagnostics)

Unique Hand-Warming Technology Supports High-Quality Fingertip Blood Sample Collection

Warming the hand is an effective way to facilitate blood collection from a fingertip, yet off-the-shelf solutions often do not fulfill laboratory requirements. Now, a unique hand-warming technology has... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.