We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Technopath Clinical Diagnostics


Fluidigm Corporation focuses on the most pressing needs in translational and clinical research, including cancer, imm... read more Featured Products: More products

Download Mobile App


ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.

Spatial Landscape of Lung Pathology Investigated During COVID-19 Progression

By LabMedica International staff writers
Posted on 13 Apr 2021
Print article
Image: The Hyperion Imaging System brings proven CyTOF technology together with imaging capability to empower simultaneous interrogation of four to 37 protein markers using Imaging Mass Cytometry (Photo courtesy of Fluidigm)
Image: The Hyperion Imaging System brings proven CyTOF technology together with imaging capability to empower simultaneous interrogation of four to 37 protein markers using Imaging Mass Cytometry (Photo courtesy of Fluidigm)
Early histopathological changes of viral pneumonias are rarely observed because histopathological examination is not necessary for diagnosis, but late stage changes in viral pneumonias are well defined, most commonly in autopsy series.

Since the outbreak of the COVID-19 pandemic, much has been learned regarding its clinical course, prognostic inflammatory markers, disease complications, and mechanical ventilation strategy. Clinically, three stages have been identified based on viral infection, pulmonary involvement with inflammation, and fibrosis.

Medical Scientists at Weill Cornell Medicine (New York, NY, USA) and their colleagues used high parameter imaging mass cytometry to measure the expression level of 36 proteins at single-cell resolution, allowing them to characterize the pathophysiology and immune response in the lungs of 10 patients who died from COVID-19. They investigated at single cell resolution, the cellular composition and spatial architecture of human acute lung injury including SARS-CoV-2. The team also looked at samples from patients who died with acute respiratory distress syndrome from influenza (two patients), bacterial infection (four patients), and bacterial pneumonia (three patients), along with post-mortem lung tissue from four otherwise healthy individuals.

The panel included phenotypic markers of endothelial, epithelial, mesenchymal, and immune cells, functional markers (activation, inflammation and cell death), and an antibody specific to the spike protein of SARS-CoV-2. They used immunohistochemistry and targeted spatial transcriptomic measurements to validate their imaging mass cytometry findings from the Hyperion Imaging System (Fluidigm, South San Francisco, CA, USA).

The scientists reported that the spatially resolved, single-cell data unravels the disordered structure of the infected and injured lung alongside the distribution of extensive immune infiltration. Neutrophil and macrophage infiltration are hallmarks of bacterial pneumonia and COVID-19, respectively. They provided evidence that SARS-CoV-2 infects predominantly alveolar epithelial cells and induces a localized hyper-inflammatory cell state associated with lung damage. They observed increased macrophage extravasation, mesenchymal cells, and fibroblasts abundance concomitant with increased proximity between these cell types as the disease progresses, possibly as an attempt to repair the damaged lung tissue.

Robert Schwartz, MD, PhD, an associate professor of medicine and senior author on the study, said, “In contrast to other lung injury or disease processed, there is widespread tissue damage in late COVID-19 marked by the high amounts of pro-apoptotic cleaved caspase 3 and the off-target deposition of activated complement C5b-C9 attack complex in epithelial cells.”

The authors concluded that this spatial single-cell landscape enabled the pathophysiological characterization of the human lung from its macroscopic presentation to the single-cell, providing an important basis for the understanding of COVID-19, and lung pathology in general. The study was published on March 29, 2021 in the journal Nature.

Related Links:
Weill Cornell Medicine

Gold Supplier
Proficiency Assessment Software
CellaVision Proficiency Software
Gold Supplier
Liquid Handling Workstation
AdvanSure E3 SYSTEM
IFA Automated Processor
Direct-to-PCR Workflow for SARS-COV-2 Detection
Direct to PCR SARS-COV-2 Solution

Print article



view channel

Thermo Fisher Launches World’s First Fully Integrated Digital PCR (dPCR) System

Thermo Fisher Scientific Inc. (Waltham, MA, USA) has launched the world’s first fully integrated digital PCR (dPCR) system designed to provide highly accurate and consistent results within 90 minutes.... Read more
Copyright © 2000-2021 Globetech Media. All rights reserved.