We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Genetic Defect Linked to Pediatric Liver Disease

By LabMedica International staff writers
Posted on 04 Mar 2019
Print article
Image: A histopathology of the bile duct of a patient with biliary atresia: loss of bile ducts, brisk ductular reaction, and bile plugs (Photo courtesy of Hopkins GI Pathology).
Image: A histopathology of the bile duct of a patient with biliary atresia: loss of bile ducts, brisk ductular reaction, and bile plugs (Photo courtesy of Hopkins GI Pathology).
Biliary atresia (BA) is the most common cause of end‐stage liver disease in children and the primary indication for pediatric liver transplantation, yet underlying etiologies remain unknown.

Approximately 10% of infants affected by BA exhibit various laterality defects (heterotaxy) including splenic abnormalities and complex cardiac malformations, a distinctive subgroup commonly referred to as the biliary atresia splenic malformation (BASM) syndrome.

A large team of medical scientists at the University of Colorado Anschutz (Aurora, CO, USA) sequenced DNA specimens from 67 subjects with BASM, including 58 patient-parent trios. They looked at 2,016 genes, a subset of the full genome that was associated with proteins that were candidates to cause a disease like BA. Candidate gene variants derived from the pre‐specified set of 2,016 genes associated with ciliary dysgenesis and/or dysfunction or cholestasis were prioritized according to pathogenicity, population frequency, and mode of inheritance.

The team found five BASM subjects harbored rare and potentially deleterious bi‐allelic variants in polycystin 1‐like 1, (PKD1L1), a gene associated with ciliary calcium signaling and embryonic laterality determination. Heterozygous PKD1L1 variants were found in three additional subjects. Immunohistochemical analysis of liver from the one BASM subject available revealed decreased PKD1L1 expression in bile duct epithelium when compared to normal livers and livers affected by other non‐cholestatic diseases.

Ronald Sokol, MD, a pediatric gastroenterologist and co-author of the study, said, “We don't know the cause of biliary atresia, which interferes with our ability to treat affected children. The importance of this is that scientists have never identified a gene, when mutated that causes BA. This is the first time it has been found.”

The authors concluded that whole exome sequencing identified bi‐allelic and heterozygous PKD1L1 variants of interest in eight BASM subjects from the ChiLDReN dataset. The dual roles for PKD1L1 in laterality determination and ciliary function suggest that PKD1L1 is a new, biologically plausible, cholangiocyte‐expressed candidate gene for the BASM syndrome. The study was published on January 21, 2019, in the journal Hepatology.

Related Links:
University of Colorado Anschutz

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The real-time multiplex PCR test is set to revolutionize early sepsis detection (Photo courtesy of Shutterstock)

1 Hour, Direct-From-Blood Multiplex PCR Test Identifies 95% of Sepsis-Causing Pathogens

Sepsis contributes to one in every three hospital deaths in the US, and globally, septic shock carries a mortality rate of 30-40%. Diagnosing sepsis early is challenging due to its non-specific symptoms... Read more

Pathology

view channel
Image: The QIAseq xHYB Mycobacterium tuberculosis Panel uses next-generation sequencing (Photo courtesy of 123RF)

New Mycobacterium Tuberculosis Panel to Support Real-Time Surveillance and Combat Antimicrobial Resistance

Tuberculosis (TB), the leading cause of death from an infectious disease globally, is a contagious bacterial infection that primarily spreads through the coughing of patients with active pulmonary TB.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.