Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Sensitive Tumor Detection Uses Cell-Free DNA Methylomes

By LabMedica International staff writers
Posted on 27 Nov 2018
A combination of "liquid biopsy," epigenetic alterations and machine learning has been used to develop a blood test to detect and classify cancer at its earliest stages. More...
The method holds promise of being able to find cancer earlier when it is more easily treated and long before symptoms ever appear.

The use of liquid biopsies for cancer detection and management is rapidly gaining prominence. Current methods for the detection of circulating tumor DNA involve sequencing somatic mutations using cell-free DNA, but the sensitivity of these methods may be low among patients with early-stage cancer given the limited number of recurrent mutations.

Scientists at the Princess Margaret Cancer Centre (Toronto, ON, Canada) and their colleagues developed a sensitive, immunoprecipitation-based protocol to analyze the methylome of small quantities of circulating cell-free DNA, and demonstrate the ability to detect large-scale DNA methylation changes that are enriched for tumor-specific patterns.

The investigators tracked the cancer origin and type by comparing 300 patient tumor samples from seven disease sites (lung, pancreatic, colorectal, breast, leukemia, bladder and kidney) and samples from healthy donors with the analysis of cell-free DNA (cfDNA) circulating in the blood plasma. In every sample, the "floating" plasma DNA matched the tumor DNA. The team has since expanded the study and has now profiled and successfully matched more than 700 tumor and blood samples from more cancer types.

By profiling epigenetic alterations instead of mutations, the team was able to identify thousands of modifications unique to each cancer type. Then, using a big data approach, they applied machine learning to create classifiers able to identify the presence of cancer-derived DNA within blood samples and to determine the cancer type. This basically turns the 'one needle in the haystack' problem into a more solvable 'thousands of needles in the haystack', where the computer just needs to find a few needles to define which haystack has needles.

This work sets the stage to establish biomarkers for the minimally invasive detection, interception and classification of early-stage cancers based on plasma cell-free DNA methylation patterns. Daniel D. De Carvalho, PhD, a professor of cancer genetics and senior author of the study, said, “We are very excited. A major problem in cancer is how to detect it early. It has been a 'needle in the haystack' problem of how to find that one-in-a-billion cancer-specific mutation in the blood, especially at earlier stages, where the amount of tumor DNA in the blood is minimal.” The study was published on November 14, 2018, in the journal Nature.

Related Links:
Princess Margaret Cancer Centre


New
Gold Member
Clinical Drug Testing Panel
DOA Urine MultiPlex
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Gold Member
Hybrid Pipette
SWITCH
Rapid Molecular Testing Device
FlashDetect Flash10
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.