We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Genetic Mutation Identified in Childhood Brain Disorder

By LabMedica International staff writers
Posted on 21 Aug 2018
Print article
Image: A comparison of an unaffected brain and an affected brain with pachygyria (Photo courtesy of Case Western Reserve University School of Medicine).
Image: A comparison of an unaffected brain and an affected brain with pachygyria (Photo courtesy of Case Western Reserve University School of Medicine).
Pachygyria is characterized by abnormal movement of brain nerve cells, known as neurons, during development of the brain and nervous system and is caused by a breakdown in the fetal neuronal migration process due to genetic or possibly environmental influences.

During normal embryonic growth, immature cells that later develop into specialized nerve cells (neurons) normally migrate to the brain's surface, making several layers of cells. When this process is impaired, the cells do not migrate to their locations, resulting in too few cell layers and absence (agyria) or incomplete development (pachygyria) of gyri.

A team of global genetics experts led by those at Case Western Reserve University Medical School (Cleveland, OH, USA) have discovered a genetic mutation and the faulty development process it triggers, causing a debilitating brain-based disorder in children, known as pachygyria. The scientists used genetic sequencing to study three families affected by the disease, and discovered that children with pachygyria have a mutation in both copies of the alpha-N-catenin gene (CTNNA2), each alteration coming from one parent. The mutation leads to loss of CTNNA2, which the team then showed affected how nerve cells travel from their source of origin in the developing brain to their concluding destination in what eventually becomes the neocortex, a process called neuronal migration.

The investigators found that when CTNNA2 is absent due to genetic mutation, excessive amounts of Actin-Related Proteins (ARP2/3) bind to actin, ultimately disrupting the mechanisms needed for appropriate migrating and branching out of nerve cells. Specifically, resultants ARP2/3 over-activity leads to excessive branching, which impairs neuron growth and stability. The finding raises the possibility of genetic engineering through techniques such as CRISPR-Cas9.

In addition to uncovering a key gene responsible for pachygyria and describing how its mechanisms operate, the scientists discovered a variation of the condition. Typically in cases of pachygyria, either the front or back of the brain displays smooth, non-wrinkled brain surface features. In cases of normal brain development, these areas are convoluted, resembling cauliflower in appearance. In the three families studied, they discovered that both the front and back of the brain were smooth.

The authors concluded that their findings identify CTNNA2 as the first catenin family member with biallelic mutations in humans, causing a new pachygyria syndrome linked to actin regulation, and uncover a key factor involved in ARP2/3 repression in neurons. Ashleigh E. Schaffer, PhD, an assistant professor of genetics and lead author of the study, said, “Our finding that alpha-N-catenin mutations cause pachygyria is an important step in understanding how neuronal development is regulated. The fact that we found this unique feature of back and front smooth brain led us to conclude that a new gene, not previously linked to pachygyria, is responsible. This turned out to be the case,” The study was published on July 16, 2018, in the journal Nature Genetics.

Related Links:
Case Western Reserve University Medical School

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: Fingertip blood sample collection on the Babson Handwarmer (Photo courtesy of Babson Diagnostics)

Unique Hand-Warming Technology Supports High-Quality Fingertip Blood Sample Collection

Warming the hand is an effective way to facilitate blood collection from a fingertip, yet off-the-shelf solutions often do not fulfill laboratory requirements. Now, a unique hand-warming technology has... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.