We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Circulating Tumor Cells Provide Information Leading to Liquid Biopsy Biomarkers

By LabMedica International staff writers
Posted on 04 Oct 2016
Genomic analysis of pooled circulating tumor cells (CTCs) from men with metastatic castration-resistant prostate cancer revealed a reproducible, but highly complex pool of potential molecular biomarkers.

Metastatic castration-resistant prostate cancer (mCRPC) is the type of prostate cancer that does not respond to androgen deprivation or treatment with androgen receptor antagonists.

Investigators at Duke University (Durham, NC, USA) turned to CTCs as a source of genetic information with the potential to facilitate a greater understanding of tumor biology and enable a more precise approach to treatment. More...
Towards this end, they analyzed and compared the genomes from matched CTCs and normal leukocytes obtained from 16 patients with mCRPC and primary or acquired resistance to the drug abiraterone acetate or enzalutamide.

Abiraterone acetate is a steroidal androgen synthesis inhibitor used in combination with prednisone in mCRPC. It is a prodrug to the active agent abiraterone, which has the capacity to lower circulating testosterone to an undetectable level. Enzalutamide is a synthetic non-steroidal anti-androgen used for the treatment mCRPC. This drug was reported to reduce serum prostate specific antigen (PSA) levels by 89% after a month of treatment.

CTCs and paired leukocytes were isolated from blood through red cell lysis, CD45 depletion, and flow sorting based on expression of the EpCAM/CD45 surface marker. The investigators performed whole genomic copy number analysis of CTCs and matched patient leukocytes using array-based comparative genomic hybridization (aCGH) and compiled copy gains and losses with a particular focus on those genes highly implicated in mCRPC progression and previously validated as being aberrant in metastatic tissue samples and genomic studies of reference mCRPC datasets.

Results revealed genomic gains in more than 25% of CTCs. Gains were observed in the AR, FOXA1, ABL1, MET, ERG, CDK12, BRD4, and ZFHX3 genes. Common genomic losses involved the PTEN, ZFHX3, PDE4DIP, RAF1, and GATA2 genes.

“We have developed a method that allows us to examine the whole genome of rare circulating cancer cells in the blood, which is unique in each patient, and which can change over time during treatment,” said senior author Dr. Andrew Armstrong, professor of medical oncology at Duke University. “Among the genomic changes in the patients’ individual cancers, we were able to find key similarities between the cancer cells of men who have hormone-resistant prostate cancer. Our goal is to develop a liquid biopsy that would be non-invasive, yet provide information that could guide clinical decisions.”

The study was published in the September 6, 2016, online edition of the journal Clinical Cancer Research.

Related Links:
Duke University



Gold Member
Collection and Transport System
PurSafe Plus®
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Sperm Quality Analyis Kit
QwikCheck Beads Precision and Linearity Kit
Human Estradiol Assay
Human Estradiol CLIA Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.