We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Use of Noninvasive Blood Thermograms to Diagnose Cervical Cancer

By LabMedica International staff writers
Posted on 22 Jan 2014
Differential scanning calorimetry (DSC), a noninvasive analytical tool, has been adapted to analyze blood samples and produce plasma thermograms that are diagnostic for cervical cancer.

DSC technology has recently been shown to detect specific changes in the thermal behavior of blood plasma proteins in several diseases. More...
The present study, carried out by cervical cancer investigators at the University of Louisville (KY, USA), evaluated the utility of employing DSC to differentiate among healthy controls, increasing severity of cervical intraepithelial neoplasia (CIN), and early and advanced invasive carcinomas of the cervix (IC).

The noninvasive DSC procedure generates a plasma thermogram from a blood plasma sample that has been “melted” to produce a unique signature indicating an individual’s health status.

Results revealed that significant discrimination was apparent relative to the extent of disease with no clear effect of demographic factors such as age, ethnicity, smoking status, and parity. Of most clinical relevance, there was strong differentiation of CIN from healthy controls and IC, and among patients with IC between Stage I and advanced cancer.

The investigators speculated that the observed disease-specific changes in a patient's thermogram reflected differential expression of disease biomarkers that subsequently bound to and affected the thermal behavior of the most abundant plasma proteins. The effect of interacting biomarkers could be inferred from the modulation of thermograms but could not be directly identified by DSC. To investigate the nature of the proposed interactions, mass spectrometry (MS) analyses were employed. Quantitative assessment of the low molecular weight protein fragments of plasma and urine samples revealed a small list of peptides whose abundance was correlated with the extent of cervical disease.

“We have been able to demonstrate a more convenient, less intrusive test for detecting and staging cervical cancer,” said first author Dr. Nichola Garbett, instructor of medicine at the University of Louisville. “The key is not the actual melting temperature of the thermogram, but the shape of the heat profile. We have been able to establish thermograms for a number of diseases. Comparing blood samples of patients who are being screened or treated against those thermograms should enable us to better monitor patients as they are undergoing treatment and follow-up. This will be a chance for us to adjust treatments so they are more effective. Additionally, other research has shown that we are able to demonstrate if the current treatment is effective so that clinicians will be able to better tailor care for each patient.”

In order to commercialize DSC technology the University of Louisville investigators have founded a start-up company, Louisville Bioscience, Inc. (KY, USA), which holds an exclusive license for the Plasma Thermogram (pT) technology.

The study describing use of DSC to diagnose cervical cancer was published in the January 8, 2014, online edition of the journal PLOS ONE.

Related Links:

University of Louisville
Louisville Bioscience, Inc.



New
Gold Member
Hybrid Pipette
SWITCH
Portable Electronic Pipette
Mini 96
New
Gold Member
Collection and Transport System
PurSafe Plus®
Sample Transportation System
Tempus1800 Necto
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New evidence shows viscoelastic testing can improve assessment of blood clotting during postpartum hemorrhage (Photo courtesy of 123RF)

Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage

Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more

Immunology

view channel
Image: The CloneSeq-SV approach can allow researchers to study how cells within high-grade serous ovarian cancer change over time (Photo courtesy of MSK)

Blood Test Tracks Treatment Resistance in High-Grade Serous Ovarian Cancer

High-grade serous ovarian cancer (HGSOC) is often diagnosed at an advanced stage because it spreads microscopically throughout the abdomen, and although initial surgery and chemotherapy can work, most... Read more

Industry

view channel
Image: The enhanced collaboration builds upon the successful launch of the AmplideX Nanopore Carrier Plus Kit in March 2025 (Photo courtesy of Bio-Techne)

Bio-Techne and Oxford Nanopore to Accelerate Development of Genetics Portfolio

Bio-Techne Corporation (Minneapolis, MN, USA) has expanded its agreement with Oxford Nanopore Technologies (Oxford, UK) to broaden Bio-Techne's ability to develop a portfolio of genetic products on Oxford... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.