We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Werfen

Download Mobile App




Molecular Basis of Alzheimer’s Disease Determined

By LabMedica International staff writers
Posted on 02 Oct 2013
Alzheimer's disease is thought to be caused by the buildup of abnormal, thread-like protein deposits in the brain, known as beta-amyloid fibrils. More...


In vitro, β-amyloid (Aβ) peptides form polymorphic fibrils, with molecular structures that depend on growth conditions, including various oligomeric and protofibrillar aggregates.

Scientists at the US National Institute of Health (NIH, Bethesda, MD, USA) working with colleagues from the University of Chicago (IL, USA) investigated structures of human brain-derived Aβ fibrils using seeded fibril growth from brain extract and data from solid-state nuclear magnetic resonance and electron microscopy.

They extracted β-amyloid fibril fragments from the brain tissue of two patients with different clinical histories and degrees of brain damage and then used these fragments to grow a large quantity of fibrils in a dish. They found that a single predominant 40 residue Aβ (Aβ40) fibril structure prevailed in the brain tissue of each patient, but the molecular structures were different between the two patients. A molecular structural model developed for Aβ40 fibrils from one patient reveals features that distinguish in vivo- from in vitro-produced fibrils.

Robert Tycko, PhD, a scientist at the NIH, and senior author of the study, said, “This work represents the first detailed characterization of the molecular structures of beta-amyloid fibrils that develop in the brains of patients with Alzheimer's disease. This detailed structural model may be used to guide the development of chemical compounds that bind to these fibrils with high specificity for purposes of diagnostic imaging, as well as compounds that inhibit fibril formation for purposes of prevention or therapy. This may mean that fibrils in a given patient appear first at a single site in the brain, and then spread to other locations while retaining the identical molecular structure.” The study was published on September 12, 2013, in the journal Cell.

Related Links:
US National Institute of Health
University of Chicago



Gold Member
Collection and Transport System
PurSafe Plus®
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Gel Cards
DG Gel Cards
Gold Member
Automated MALDI-TOF MS System
EXS 3000
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The world’s largest metabolomic dataset sets the stage for pinprick tests to predict disease years before symptoms (Photo courtesy of Nightingale Health)

Pinprick Blood Test Could Detect Disease 10 Years Before Symptoms Appear

Many serious conditions begin silently years before symptoms appear, yet routine screening rarely detects these early physiological shifts. A powerful new solution is emerging: pinprick blood tests driven... Read more

Hematology

view channel
Image: Research has linked platelet aggregation in midlife blood samples to early brain markers of Alzheimer’s (Photo courtesy of Shutterstock)

Platelet Activity Blood Test in Middle Age Could Identify Early Alzheimer’s Risk

Early detection of Alzheimer’s disease remains one of the biggest unmet needs in neurology, particularly because the biological changes underlying the disorder begin decades before memory symptoms appear.... Read more

Microbiology

view channel
Image: The SMART-ID Assay delivers broad pathogen detection without the need for culture (Photo courtesy of Scanogen)

Rapid Assay Identifies Bloodstream Infection Pathogens Directly from Patient Samples

Bloodstream infections in sepsis progress quickly and demand rapid, precise diagnosis. Current blood-culture methods often take one to five days to identify the pathogen, leaving clinicians to treat blindly... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.