We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Long-Read Sequencing Technology to Identify Genetic Contributors of Rare Diseases in Children

By LabMedica International staff writers
Posted on 06 Sep 2024
Print article
Image: The researchers have been awarded an NIH grant to identify genetic contributors to rare diseases in children (Photo courtesy of Adobe Stock)
Image: The researchers have been awarded an NIH grant to identify genetic contributors to rare diseases in children (Photo courtesy of Adobe Stock)

As genetic sequencing technology advances and becomes more accessible, significant progress has been made in understanding the genetic bases of various diseases. This progress has sparked a proliferation of clinical applications for genetic testing, providing hope and better outcomes for individuals suffering from numerous genetic conditions. Despite these advancements, there remains a significant number of individuals with rare diseases who go undiagnosed, even with cutting-edge genomic testing. To address this, a team of researchers is now employing a novel sequencing approach known as long-read genome sequencing to re-examine the genomes of individuals who previously underwent sequencing without receiving a diagnosis. Long-read sequencing offers a more complete view of the genome, capturing many genetic variants that may be overlooked by traditional sequencing techniques.

At the HudsonAlpha Institute for Biotechnology (Huntsville, AL, USA), researchers are leading the way in using genome sequencing to transform the diagnosis of genetic disorders, particularly in children. Since 2013, the team has sequenced the genomes of nearly 2,000 children, with over 40% revealing genetic insights related to their clinical symptoms. They are now focusing on long-read sequencing, which they believe could provide diagnoses for more children and their families. Preliminary findings indicate that long-read sequencing could identify significant genetic insights in 5-10% of cases previously tested but undiagnosed, potentially improving diagnostic rates for a broad spectrum of pediatric conditions. Given that this technology is still in its early stages, there is considerable scope for further refinement and improvement, which could even further enhance diagnostic success rates as indicated by initial studies.

The research team plans to apply long-read sequencing to re-assess the genomes of over 500 individuals whose previous short-read sequencing did not yield conclusive results. In certain cases, they will also sequence the genomes of the patients' parents to detect both inherited and new genetic variations. Long-read sequencing is particularly adept at identifying types of genetic variations that are not typically detected with short-read sequencing, such as structural variants. These structural variants, which include large deletions, duplications, inversions, translocations, and other complex rearrangements, can disrupt gene function and lead to disease. The limited capability of short-read sequencing to detect these structural variants means that long-read sequencing may uncover additional variants that could explain the symptoms in some patients.

“Long-read sequencing holds immense promise for uncovering the genetic causes of diseases,” said HudsonAlpha Faculty Investigator Greg Cooper, PhD. “My team and I are passionate about making a difference in the lives of individuals and families affected by rare genetic disorders. By pushing the boundaries of genetic research, we hope to shed light on previously hidden genetic variation and provide more accurate and timely diagnoses. Our goal is to empower families with the knowledge they need to navigate their health challenges and build a better future.”

Related Links:
HudsonAlpha Institute for Biotechnology

Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test
Unit-Dose Packaging solution
HLX
New
Human Papillomavirus Multiplex Assay
Anyplex Ⅱ HPV28 Detection
New
PoC Testing Device
QuikRead

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The discovery of a new blood group has solved a 50- year-old mystery (Photo courtesy of 123RF)

Newly Discovered Blood Group System to Help Identify and Treat Rare Patients

The AnWj blood group antigen, a surface marker discovered in 1972, has remained a mystery regarding its genetic origin—until now. The most common cause of being AnWj-negative is linked to hematological... Read more

Microbiology

view channel
Image: The Accelerate Arc System has been granted US FDA 510(k) clearance (Photo courtesy of Accelerate Diagnostics)

Automated Positive Blood Culture Sample Preparation Platform Designed to Fight Against Sepsis and AMR

Delayed administration of antibiotics to patients with bloodstream infections significantly increases the risk of morbidity and mortality. For optimal therapeutic outcomes, it is crucial to rapidly identify... Read more

Pathology

view channel
Image: Confocal- & laminar flow-based detection scheme of intact virus particles, one at a time (Photo courtesy of Paz Drori)

Breakthrough Virus Detection Technology Combines Confocal Fluorescence Microscopy with Microfluidic Laminar Flow

Current virus detection often relies on polymerase chain reaction (PCR), which, while highly accurate, can be slow, labor-intensive, and requires specialized lab equipment. Antigen-based tests provide... Read more

Industry

view channel
Image: Last year, Seegene and Werfen has entered into a collaboration on the OneSystem business to develop syndromic qPCR assays (Photo courtesy of Seegene)

Seegene and Werfen Finalize Partnership Agreement on Technology-Sharing Initiative

Seegene (Seoul, South Korea), a leading PCR molecular diagnostics company, and Werfen (Barcelona, Spain), a global diagnostics specialist, have finalized a partnership agreement as part of a technology-sharing... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.