Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




A Mass Spectrometry Approach for Monitoring Progress of Multiple Myeloma

By LabMedica International staff writers
Posted on 05 Apr 2021
An easy to perform mass spectrometry (MS) approach enables monitoring the progress of multiple myeloma by tracing unique clonal immunoglobulin gene fingerprints in blood samples.

Due to improved treatment, more patients with multiple myeloma (MM) reach a state of minimal residual disease (MRD). More...
Different strategies for MM MRD monitoring that are currently available include flow cytometry, allele-specific oligonucleotide–quantitative PCR, next-generation sequencing, and mass spectrometry (MS). The last three methods rely on the presence and the stability of a unique immunoglobulin fingerprint derived from the clonal plasma cell population.

A novel approach for generating immunoglobulin fingerprints in MRD patients was developed by investigators at Radboud University Medical Center (Nijmegen, the Netherlands) and colleagues at Erasmus Medical Center (Rotterdam, the Netherlands). They created an analysis pipeline based on MiXCR (a universal tool for fast and accurate analysis of T- and B- cell receptor repertoire sequencing data) and HIGH-VQUEST (V-QUERy and STandardization - part of the international ImMunoGeneTics (IMGT) information system.

IMGT/HighV-QUEST is the high-throughput version of IMGT/V-QUEST for the analysis of thousands of immunoglobulin (IG) and T cell receptor (TR) rearranged nucleotide sequences per run. IMGT/HighV-QUEST was developed to cope with the problematic analysis of antigen receptor data from Next-Generation Sequencing (NGS). The investigators used these analysis techniques to identify clonal molecular fingerprints and their clonotypic peptides based on transcriptomic datasets.

The investigators reported in the March 12, 2021, online edition of the journal Clinical Chemistry that the analysis pipeline was successfully validated in MM cell lines. In a cohort of 609 patients with MM, they demonstrated that the most abundant clone harbored a unique clonal molecular fingerprint and that multiple unique clonotypic peptides compatible with MS measurements could be identified for all patients. Furthermore, the clonal immunoglobulin gene fingerprints of both the light and heavy chain remained stable during MM disease progression.

Senior author, Dr. Joannes F. M. Jacobs, a medical immunologist at Radboud University Medical Center, said, "The disease is found almost everywhere in the bone marrow, but in some areas you there are more cancerous cells than in other areas. So if you take a biopsy where there are fewer cancer cells, the test result does not accurately reflect the real situation. The new method makes it much easier to follow the progression of multiple myeloma. With a single drop of blood, it is possible to very accurately show whether the number of cancerous cells in the bone marrow is increasing in a patient. In time, this blood test could potentially replace the current bone marrow puncture."

Related Links:
Radboud University Medical Center
Erasmus Medical Center



New
Gold Member
Immunochromatographic Assay
CRYPTO Cassette
Collection and Transport System
PurSafe Plus®
New
Blood Glucose Test Strip
AutoSense Test
New
Clinical Chemistry System
P780
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Immunology

view channel
Image: The VENTANA HER2 (4B5) test is now CE-IVDR approved (Photo courtesy of Roche)

Companion Diagnostic Test Identifies HER2-Ultralow Breast Cancer and Biliary Tract Cancer Patients

Breast cancer is the most common cancer in Europe, with more than 564,000 new cases and 145,000 deaths annually. Metastatic breast cancer is rising in younger populations and remains the leading cause... Read more

Pathology

view channel
Image: An adult fibrosarcoma case report has shown the importance of early diagnosis and targeted therapy (Photo courtesy of Sultana and Sailaja/Oncoscience)

Accurate Pathological Analysis Improves Treatment Outcomes for Adult Fibrosarcoma

Adult fibrosarcoma is a rare and highly aggressive malignancy that develops in connective tissue and often affects the limbs, trunk, or head and neck region. Diagnosis is complex because tumors can mimic... Read more

Technology

view channel
Image: Conceptual design of the CORAL capsule for microbial sampling in the small intestine (H. Mohammed et al., Device (2025). DOI: 10.1016/j.device.2025.100904)

Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine

The gut microbiome has been linked to conditions ranging from immune disorders to mental health, yet conventional stool tests often fail to capture bacterial populations in the small intestine.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.