Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Antibiotic-Resistant Mutations Revealed by Sequencing Method

By LabMedica International staff writers
Posted on 11 Oct 2018
Antimicrobial resistance is on the rise and is responsible for millions of deaths every year. More...
Bacterial populations consistently and rapidly overcome the challenge imposed by the use of a new antibiotic.

The genomic basis of resistance is relatively straightforward to establish for resistance conferred by acquisition of a specific gene. The repertoire of resistance genes (resistome) is now well defined and there are several curated databases and software prediction tools for resistance genes detection.

Microbiologists at the University of Melbourne (Melbourne, Australia) and their colleagues have developed a deep sequencing-based strategy for characterizing resistance-related mutations in mixed bacterial populations. The approach, known as resistance mutation sequencing (RM-seq), builds on the rationale behind low error amplicon sequencing (LEA-seq), a targeted sequencing method that involves molecular barcoding. By tweaking that method to develop RM-seq, the team was able to look at several samples simultaneously.

The scientists used Staphylococcus aureus and Mycobacterium tuberculosis and demonstrated that complex resistant sub-populations can be effectively characterized in vitro or detected in vivo using RM-seq. Genomic DNA was extracted and processed. Polymerase chain reactions were performed. The resulting amplicons comprising Illumina adaptor and indices was purified with Agencourt AMPure XP magnetic beads and sequenced on Illumina MiSeq or NextSeq. DNA was extracted from isolates cultured from sputum specimens to detect resistant sub-populations of M. tuberculosis.

The team reported that the sensitive detection of very low-frequency resistant sub-populations permits characterization of antibiotic-linked mutational repertoires in vitro and detection of rare resistant populations during infections. Accurate quantification of resistance mutations enables phenotypic screening of mutations conferring pleiotropic phenotypes such as in vivo persistence, collateral sensitivity or cross-resistance. RM-seq will facilitate comprehensive detection, characterization and surveillance of resistant bacterial populations. In pools of S. aureus selected on the antibiotic rifampicin, the team identified 72 specific mutations in a known "rifampicin resistance-determining region," including quantifiable mutations in the rpoB gene.

Romain Guérillot, PhD, the first author of the study, said, “In a biological sample, you can have a small population of resistant clones that may not be detected by traditional antibiotic resistance testing. This method, because it's based on deep sequencing, allows us to identify, accurately, very small subpopulations of resistant clones.” The study was published on August 31, 2018, in the journal Genome Medicine.

Related Links:
University of Melbourne


Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
3-Part Differential Hematology Analyzer
Swelab Alfa Plus Sampler
New
Gold Member
Blood Gas Analyzer
Stat Profile pHOx
New
Chlamydia Trachomatis Test
Aptima Chlamydia Trachomatis Assay
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








DIASOURCE (A Biovendor Company)

Channels

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: A simple blood test could replace surgical biopsies for early detecion of heart transplant rejection (Photo courtesy of Shutterstock)

Blood Test Detects Organ Rejection in Heart Transplant Patients

Following a heart transplant, patients are required to undergo surgical biopsies so that physicians can assess the possibility of organ rejection. Rejection happens when the recipient’s immune system identifies... Read more

Pathology

view channel
These images illustrate how precision oncology Organ Chips recapitulate individual patients’ responses to chemotherapy (Photo courtesy of Wyss Institute at Harvard University)

Cancer Chip Accurately Predicts Patient-Specific Chemotherapy Response

Esophageal adenocarcinoma (EAC), one of the two primary types of esophageal cancer, ranks as the sixth leading cause of cancer-related deaths worldwide and currently lacks effective targeted therapies.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.