Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Antibiotic-Resistant Mutations Revealed by Sequencing Method

By LabMedica International staff writers
Posted on 11 Oct 2018
Antimicrobial resistance is on the rise and is responsible for millions of deaths every year. More...
Bacterial populations consistently and rapidly overcome the challenge imposed by the use of a new antibiotic.

The genomic basis of resistance is relatively straightforward to establish for resistance conferred by acquisition of a specific gene. The repertoire of resistance genes (resistome) is now well defined and there are several curated databases and software prediction tools for resistance genes detection.

Microbiologists at the University of Melbourne (Melbourne, Australia) and their colleagues have developed a deep sequencing-based strategy for characterizing resistance-related mutations in mixed bacterial populations. The approach, known as resistance mutation sequencing (RM-seq), builds on the rationale behind low error amplicon sequencing (LEA-seq), a targeted sequencing method that involves molecular barcoding. By tweaking that method to develop RM-seq, the team was able to look at several samples simultaneously.

The scientists used Staphylococcus aureus and Mycobacterium tuberculosis and demonstrated that complex resistant sub-populations can be effectively characterized in vitro or detected in vivo using RM-seq. Genomic DNA was extracted and processed. Polymerase chain reactions were performed. The resulting amplicons comprising Illumina adaptor and indices was purified with Agencourt AMPure XP magnetic beads and sequenced on Illumina MiSeq or NextSeq. DNA was extracted from isolates cultured from sputum specimens to detect resistant sub-populations of M. tuberculosis.

The team reported that the sensitive detection of very low-frequency resistant sub-populations permits characterization of antibiotic-linked mutational repertoires in vitro and detection of rare resistant populations during infections. Accurate quantification of resistance mutations enables phenotypic screening of mutations conferring pleiotropic phenotypes such as in vivo persistence, collateral sensitivity or cross-resistance. RM-seq will facilitate comprehensive detection, characterization and surveillance of resistant bacterial populations. In pools of S. aureus selected on the antibiotic rifampicin, the team identified 72 specific mutations in a known "rifampicin resistance-determining region," including quantifiable mutations in the rpoB gene.

Romain Guérillot, PhD, the first author of the study, said, “In a biological sample, you can have a small population of resistant clones that may not be detected by traditional antibiotic resistance testing. This method, because it's based on deep sequencing, allows us to identify, accurately, very small subpopulations of resistant clones.” The study was published on August 31, 2018, in the journal Genome Medicine.

Related Links:
University of Melbourne


New
Gold Member
Immunochromatographic Assay
CRYPTO Cassette
Collection and Transport System
PurSafe Plus®
Autoimmune Disease Diagnostic
Chorus ds-DNA-G
New
Autoimmune Liver Diseases Assay
Microblot-Array Liver Profile Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Immunology

view channel
Image: The VENTANA HER2 (4B5) test is now CE-IVDR approved (Photo courtesy of Roche)

Companion Diagnostic Test Identifies HER2-Ultralow Breast Cancer and Biliary Tract Cancer Patients

Breast cancer is the most common cancer in Europe, with more than 564,000 new cases and 145,000 deaths annually. Metastatic breast cancer is rising in younger populations and remains the leading cause... Read more

Pathology

view channel
Image: An adult fibrosarcoma case report has shown the importance of early diagnosis and targeted therapy (Photo courtesy of Sultana and Sailaja/Oncoscience)

Accurate Pathological Analysis Improves Treatment Outcomes for Adult Fibrosarcoma

Adult fibrosarcoma is a rare and highly aggressive malignancy that develops in connective tissue and often affects the limbs, trunk, or head and neck region. Diagnosis is complex because tumors can mimic... Read more

Technology

view channel
Image: Conceptual design of the CORAL capsule for microbial sampling in the small intestine (H. Mohammed et al., Device (2025). DOI: 10.1016/j.device.2025.100904)

Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine

The gut microbiome has been linked to conditions ranging from immune disorders to mental health, yet conventional stool tests often fail to capture bacterial populations in the small intestine.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.