We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Aggressive Meningioma Linked to Transcription Factor Activity

By LabMedica International staff writers
Posted on 12 Apr 2018
Print article
Image: The GloMax Discover multimode microplate reader (Photo courtesy of Promega).
Image: The GloMax Discover multimode microplate reader (Photo courtesy of Promega).
Meningioma, a cancer of the cerebral and spinal meninges, is the most common primary CNS tumor in the USA. Meningioma is the most common primary intracranial tumor, but the molecular drivers of aggressive meningioma are incompletely understood.

A new integrated analysis suggests that the transcription factor Forkhead box protein M1 (FOXM1) can act as a meningioma driver, prompting proliferation, progression, and relatively poor outcomes in individuals with the disease, which is a primary central nervous system tumor that forms in meninges tissue surrounding the brain and spinal cord.

Scientists at the University of California, San Francisco (CA, USA) and the California State University Channel Islands (Camarillo, CA, USA) profiled from 280 tumor samples from 261 individuals with meningioma, the fresh-frozen or formalin-fixed, paraffin-embedded samples with RNA sequencing, exome sequencing, array-based DNA methylation profiling, immunohistochemistry, NanoString technology-based targeted gene expression testing, and chromatin immunoprecipitation sequencing. Matched normal samples were subjected to exome sequencing for a subset of two dozen aggressive meningioma cases.

Nucleic acids were isolated for sequencing and DNA and RNA were isolated from flash-frozen meningiomas containing more than 70% tumor cells as determined by H&E staining of frozen sections. Whole exome sequencing and DNA methylation profiling, DNA was isolated using standard techniques. For RNA-seq and real-time quantitative polymerase chain reaction (RT-qPCR), RNA was isolated from meningiomas and primary meningioma cells using the RNeasy Mini Kit. Fluorescent microscopy was performed using an SP5 confocal microscope. Proliferation assays were performed using the Cell Titer 96 Non-Radioactive Cell Proliferation Assay Kit and a GloMax Discover Multimode Microplate Reader.

The scientists found that transcriptomic analyses identified FOXM1 as a key transcription factor for meningioma proliferation and a marker of poor clinical outcomes. Consistently, they discovered genomic and epigenomic factors associated with FOXM1 activation in aggressive meningiomas. Finally, they defined a FOXM1/Wnt signaling axis in meningioma that is associated with a mitotic gene expression program, poor clinical outcomes, and proliferation of primary meningioma cells.

David R. Raleigh MD, PhD, an assistant professor and senior author of the study, said, “We now need to find out what other genes FOXM1 is activating to drive meningioma growth, and block those targets with clinical therapies. For clinicians, patients, and families, these are the most heartbreaking cases because we expect to cure meningiomas, but sometimes we can't and we don't always do a good job of differentiating 'good' and 'bad' meningiomas ahead of time.” The study was published on March 27, 2018, in the journal Cell Reports.

Related Links:
University of California, San Francisco
California State University Channel Islands
Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
Magnetic Bead Separation Modules
MAG and HEATMAG

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Pathology

view channel
Image: Comparison of traditional histopathology imaging vs. PARS raw data (Photo courtesy of University of Waterloo)

AI-Powered Digital Imaging System to Revolutionize Cancer Diagnosis

The process of biopsy is important for confirming the presence of cancer. In the conventional histopathology technique, tissue is excised, sliced, stained, mounted on slides, and examined under a microscope... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.