We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Molecular Assay System Validated for Opportunistic Virus Infections

By LabMedica International staff writers
Posted on 31 Oct 2012
Laboratory-developed real-time polymerase chain reaction (PCR) protocols have been implemented for the molecular diagnosis of opportunistic DNA virus infections. More...


The validity of a duplex real-time PCR protocols for viral DNA have been improved by using an extraction and amplification control that allows for the monitoring of the molecular diagnostic process.

Virologists at the Pierre and Marie Curie University (Paris, France) tested 152 clinical samples including 77 whole bloods, 30 bronchoalveolar lavages, 28 viral transport medium containing mucocutaneous swabs, 12 urine, and 5 stool samples. The genomes of herpes simplex virus (HSV), varicella-zoster virus (VZV), human cytomegalovirus (CMV), Epstein–Barr virus (EBV), BK virus (BKV), and adenovirus (AdV) were investigated.

The Simplexa extraction and amplification control (SEAC) set (Eurobio; Courtaboeuf, France) was evaluated in this study. This internal control corresponds to a 577-base pair DNA fragment derived from the gene encoding ribulose-1,5-bisphosphate carboxylase oxygenase large unit N-methyltransferase of the plant Arabidopsis thaliana. This is a noncompetitive internal control with its own mix, containing primers and a Quasar 670 labeled-probe specifically designed for its amplification (Biosearch Technologies; Novato, CA, USA). Viral DNA amplifications were performed on the Light cycler LC480 system (Roche Diagnostics; Meylan, France) using laboratory-developed real-time PCR assays based on hydrolysis probe technology implemented in the laboratory for virological diagnosis activity.

The SEAC results showed high reproducibility with a mean crossing point (Cp) value of 31.08 ± 1.44, and were not influenced by the virus-specific PCR performed or the type of clinical specimen tested. The use of the SEAC did not influence the results of the different virus-specific PCRs compared to other systems. The SEAC in the DNA extracts showed high stability during storage at both +4 °C and -20 °C.

The authors concluded that the use of the commercial SEAC is simple, straightforward, and beneficial. It makes not only the detection of opportunistic viruses in clinical samples more convenient and cost-effective, but it ensures also the effectiveness of the whole molecular process implemented in the laboratory to perform the diagnosis of viral infections. The SEAC provides a reliable option to improve the diagnosis of opportunistic viral infections in laboratories using in-house real-time PCR assays. The study was published in the October 2012 edition of the Journal of Virological Methods.

Related Links:
Pierre and Marie Curie University
Eurobio
Biosearch Technologies


Gold Member
Hematology Analyzer
Medonic M32B
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Rapid Molecular Testing Device
FlashDetect Flash10
6 Part Hematology Analyzer with RET + IPF
Mispa HX 88
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The test utilizes mtDNA biomarkers to detect molecular signatures associated with endometriosis (Photo courtesy of Shutterstock)

Endometriosis Blood Test Could Replace Invasive Laparoscopic Diagnosis

Endometriosis affects an estimated 1 in 10 women globally, yet diagnosis can take 7 to 10 years on average due to the invasive nature of laparoscopy and lack of accurate, non-invasive tests.... Read more

Hematology

view channel
Image: Residual leukemia cells may predict long-term survival in acute myeloid leukemia (Photo courtesy of Shutterstock)

MRD Tests Could Predict Survival in Leukemia Patients

Acute myeloid leukemia is an aggressive blood cancer that disrupts normal blood cell production and often relapses even after intensive treatment. Clinicians currently lack early, reliable markers to predict... Read more

Pathology

view channel
Image: The AI tool advances precision diagnostics by linking genetic mutations directly to disease types (Photo courtesy of Shutterstock)

AI Tool Simultaneously Identifies Genetic Mutations and Disease Type

Interpreting genetic test results remains a major challenge in modern medicine, particularly for rare and complex diseases. While existing tools can indicate whether a genetic mutation is harmful, they... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.